Southampton

SNAPPshot: Suite for Numerical Analysis of Planetary Protection

Francesca Letizia¹, Camilla Colombo¹, Jeroen Van den Eynde¹, Roberto Armellin¹, Rüdiger Jehn²

¹ University of Southampton ² ESA/ESOC

6th International Conference on Astrodynamics Tools and Techniques Session 4: Interplanetary Flight and Non-Earth Orbits Darmstadt, 16th March 2016

Planetary protection requirements

Compliance for interplanetary missions

Spacecraft and launchers used for **interplanetary missions** and missions to the **Lagrangian points** may come back to the Earth or impact with other planets (example: Apollo launchers)

Planetary protection requirements: avoid the risk of **contamination** = check maximum **impact probability** with planets over 50-100 years

Development of a tool for the verification of the compliance using a **Monte Carlo** approach and the **b-plane** representation Breakup of the object WT110F during re-entry (November 2015)

SNAPPshot: Suite for Numerical Analysis of Planetary Protection

MonteCarlo initialisation

Number of runs & generation of the initial conditions

Number of runs (n) to verify the maximum level of impact probability (p), with a level of confidence (α), from the expression of the one-sided Wilson's confidence interval

 $\hat{p} = 0 \rightarrow$ analytical expression for *n* \hat{p} **incremented** when impacts with a **reference body** (e.g. Mars) are registered

Generation of the initial conditions

- launcher uncertainty covariance matrix & Cholesky factorisation
- failure of the propulsion system random failure time & state vector interpolation

$$p \le \left(\frac{\hat{p} + \frac{z^2}{2n} + z^2 \sqrt{\frac{\hat{p}(1-\hat{p})}{n} + \frac{z^2}{4n^2}}}{1 + \frac{z^2}{n}}\right)$$

$$z = \alpha$$
-quantile of a standard
normal distribution
$$\hat{p} = \frac{\text{number of impacts}}{n}$$

Additional distributions

area-to-mass ratio
 user provides known values and
 select a distribution
 (e.g. uniform, triangular)

> Jehn 2015 > Wallace 2015

Trajectory propagation

Force model, ephemerides & propagator

Coordinates

Cartesian coordinates in the J2000 reference frame centred in the Solar System Barycentre

<u>Force model</u> gravitational forces + solar radiation pressure (cannonball model)

Ephemerides

ESA routine for planetary ephemerides (based on DE422) or **SPICE toolkit**

Propagator

Runge-Kutta methods with step size control technique (**adaptive** methods or **regularised steps**)

<u>Additional features</u> event functions and dense output

B-plane tool *B-plane definition*

Plane **orthogonal** to the object **planetocentric velocity (U)** when the object enters the planet's sphere of influence (SOI)

- η-axis: parallel to the planetocentric velocity
- ζ-axis: parallel to the projection on the b-plane of the planet velocity, but in the opposite direction
- ξ-axis: to complete a positively oriented reference system
- **B**, intersection of the **incoming asymptote** and the b-plane

B-plane tool *State characterisation: impact*

B-plane tool

Additional information on the b-plane

b-plane of the Earth for the encounter with Apophis

 Impact condition if B within the area of the *projection* of planet on the b-plane

Decoupling distance & time

+

+

- ξ coordinate related to the minimum geometrical distance between the planet's and the object's orbits
- ζ coordinate related to the phasing between the planet and the object

Resonances, applying the analytical theory by Valsecchi et al. (2003)

B-plane tool

State characterisation: multiple fly-bys

When **multiple fly-bys** are recorded, only one state should be selected to characterise the trajectory. Two options:

- first encounter
- worst encounter

To select the worst encounter, the states need to be **sorted**:

Distance-driven

the worst case is the one with the minimum distance from the planet

State-driven

e.g. resonance > simple close approach e.g. Mars > Mercury

Evolution of one GAIA Fregat trajectory on the Earth's b-plane for 100 years of propagation x 10⁵ 6 **Consecutive fly-bys** 4 1 2 ζ [km] 0 -2 3 -4 2 -6 -5 5 $\mathbf{0}$ ξ [km] x 10⁵

Solo launcher Simulation settings

- Uncertainty: **initial position** and **velocity** (covariance matrix)
- Propagator: RK8(7)
- Propagation time: 100 years
- When multiple encounters: worst
- Encounter ranking: state
- Number of runs = **1000**
- Number of impacts = 51 (Venus)
- Running time = 17 minutes

Solo launcher

Velocity dispersion & trajectory characterisation

Solo launcher B-plane visualisation (Venus)

B-plane elements (impact region and resonance circles) defined for the **nominal trajectory**

All runs represented on the same plane, so the points may represent encounters at **different time instants**

In this case (different from the launcher of BepiColombo) the launcher goes **directly** to Venus

The dispersion in the initial condition affects mostly the **phasing** between the object and Venus

BepiColombo: failure of the propulsion system *Simulation settings*

- Uncertainty: **failure time** (during thrust arcs in the Earth-Earth phase)
- Propagator: RK8(7)
- Propagation time: 100 years
- When multiple encounters: worst
- Encounter ranking: state
- Number of runs = **54114** (max probability of collision: 10⁻⁴, confidence level: 99%)
- Number of impacts = 28 (Earth)
- Running time = 104 minutes

BepiColombo: failure of the propulsion system *B-plane visualisation (Earth)*

BepiColombo: failure of the propulsion system *Distribution with time of failure*

Conclusions

Launchers and spacecraft used for interplanetary missions and missions to the Lagrangian points may be inserted in trajectory that will impact a celestial body. Need to estimate their compliance with **planetary protection requirements**.

A new tool, **SNAPPshot**, was developed for this purpose. A **Monte Carlo** analysis is performed considering the dispersion of the initial condition and of other parameters.

Each run is characterised by studying the close approaches through the **b-plane** representation to detect conditions of **impacts** and **resonances**.

The method was applied to study the dispersion of the **launcher** of **Solo** and the failure of the **propulsion system** of **BepiColombo**.

Flexible tool: applicability can be extended to the **robust design** of manoeuvres or to the study of **asteroid deflection missions**.

The present study was funded by the European Space Agency through the contract 4000115299/15/D/MB, *Planetary Protection* Compliance Verification Software. Technical Responsible University of Southampton: Camilla Colombo, c.colombo@soton.ac.uk

SNAPPshot: Suite for Numerical Analysis of Planetary Protection

Questions?

Francesca Letizia **Astronautics Research Group** Faculty of Engineering and the Environment University of Southampton

⊠ f.letizia@soton.ac.uk

