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Re-entry Prediction Service

« There are about 17 000 tracked objects in Earth orbit:
e —~ 7500 have an estimated orbital lifetime less than 100 year.
e —~ 1250 of those have a mass of more than 1 kg
« Vast majority are smaller pieces of space debris.

« An automatic service has been in use since 1999 to provide re-entry
predictions (daily) for all the objects:

e As 10 to 40 % of large objects such as rocket bodies or
satellites can survive until ground impact.

e« As we are interested in the statistical decay rates for
environment evolution.

. Intimately linked with orbital lifetime predictions prior to
launch.

« Considering atmospheric and third-body induced re-entries.
« The focus is on the service as a whole, not the individual object!
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Re-entry Prediction Service

e Environment model:

« Solar and geomagnetic activity prediction model (SOLMAG) for
the solar proxies (Sun spot number, F10.7, daily Ap):

«  Short term prediction (solar day, — 1 month) based on a
neural network

e Long term based on McNish and Lincoln predictions for
the sun spot numbers with correlations for F10.7 and Ap.

. ISO and ECSS space weather methodologies supported.

« Atmosphere model MSIS90, with bridging in lower altitudes.
 Input data:

Public Two-Line Element set provided by USSTRATCOM.

« Dedicated observations near re-entry.

« Catalogue on high eccentric objects (ISON).
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Ballistic parameter estimation

 Derivation of the Ballistic parameter B =cD% key for the prediction
accuracy.

« Based on a shooting method:
e OT parameter to describe the

A minimum time distance for
. 5T state pairs.
§ 0o ﬁ 00
§ ®e « AT parameter to describe the
£ time span for considering
) AT states for the B estimation.

Epoch
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Ballistic parameter estimation {cesa

 Derivation of the Ballistic parameter B =cD% key for the prediction

accuracy.

« Based on a shooting method: ¢ For each pair, Bp minimised

via a semi-analytical

05 propagation which searches

» oT for the minimum positional

E ®eooe ﬁ °® error.

g ®e « Input is a geometric estimate
% — (DISCOQOS).

" « The mean of all pairs Bps is

5>  taken as estimated B.
Epoch e The variance can be used to

identify manoeuvring objects.
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Ballistic parameter estimation
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Ballistic parameter estimation

Rocket Bodies
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Ballistic parameter estimation
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Ballistic parameter estimation {cesa

 Derivation of the Ballistic parameter B =cD% key for the prediction
accuracy, as the propagation assumes 3 degrees of freedom:

« Based on a shooting method, but there is a critical dependency
on 0T and AT.

« Based on the results of an orbit determination process, in
which case also the solar radiation pressure can be used.

e Using the geometric derivation, e.g. in cases where the
perigee altitude is above 1000km.
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Ballistic parameter estimation {cesa

 As quality metric we can use the Relative Prediction Error:

EpOChpredicted re—entry — EpOChactual re—entry| 100

EP -
EpOChprediction - EpOChactual re—entry

« By using a large group of objects in similar orbit regions, optimum
solutions can be envisaged:

« Nearly identical design, varying orbital node, none or limited
variability in properties, availability of frequently updated
orbital states.

 Flock satellites released from the ISS (inc 52, circular, low alt)

 Ariane upper stages in GTO
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Ballistic parameter estimation: Flock
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Ballistic parameter estimation: Flock
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Ballistic parameter estimation: GTO
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Ballistic parameter estimation: GTO
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Long term re-entry prediction

 Analytic re-entry predictions as
a first step for any object based
on King-Hele equations (with
density at initial perigee).

10 Payload and Rocket Bodies
T T T

10° 1

« This is it for objects for objects
with a lifetime above 1000y.

104

Orbital lifetime [yr]

* lteratively (with density 10°}
sampled at over solar cycles)
applied to objects with a lifetime 102, - . . _

Orbital perigee altitude [km]

above multiple solar cycles.
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Short term re-entry prediction

* For lifetimes less than two solar cycles and GTO objects.

e For an automated procedure, the aim is to have a qualitative
assessment of the re-entry epoch.

 Fast Orbit Computation Utility Software (FOCUS):

. Integrated combined time rates of change of singly averaged
perturbation equations, taking into account a non-spherical
Earth gravity potential, a dynamic Earth atmosphere, luni-
solar gravity perturbations, and solar radiation.

e Fourth-order Adams-Bashforth-Moulton predictor/corrector
method, which is initiated by a self-starting fourth-order
Runge—Kutta—Fehlberg method

« Fixed time steps of 0.1 to 5 orbits, depending on the time to
go until re-entry.
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Short term re-entry prediction:

automatic FOCUS example S3M
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Short term re-entry prediction:

automatic FOCUS example S3M

100 . T

Relative prediction error [%]

—40 | | | i
=300 =250 =200 =150 -100 =50 0

Time till re-entry [d]

Stijn Lemmens | ESOC | 15/03/2016 | Slide 18

ESA UNCLASSIFIED - For Official Use European Space Agency



Short term re-entry prediction

* For lifetimes less than two solar cycles and GTO objects.

e For an automated procedure, the aim is to have a qualitative
assessment of the re-entry epoch.

« Near the re-entry epoch of high interest objects this is replaced by
manual re-entry predictions, with as aim the identification of the
affected areas on ground.

o *£20% Ej, is considered state of the art.

. Dedicated observation can be added.

e FOCUS/Orbit Generator (OrbGen) combination:
« B estimation for the orbit determination process.

Full numerical integration when changing flow regimes.
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Short term re-entry prediction:

Dedicated prediction example S3M
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Short term re-entry prediction

« To which extend is the -calculation part, excluding the orbit
determination, automatable?

« Can we reach the state of the art 20% E, (at least statistically)?

e FOCUS/Orbit Generator (OrbGen) augmented combination:

« B is again estimated by a shooting method and refined based
on minimisation w.r.t. to the semi-major axis and argument of
latitude.

Full numerical integration when changing flow regimes.

« Comparison with assumed to be observed re-entry events (JSpOC data
between 2014 and 2016) in terms of Ep:

« payloads and rocket bodies, closer than 50 days till re-entry:
e 62 objects, ecc < 0.01, for automatic prediction,

« 25 objects for the augmented prediction.
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Short term re-entry prediction:

E, automated predictions
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Short term re-entry prediction:

Er, augmented predictions
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Short term re-entry prediction

* Augmented but automated re- smmarmy
entry predictions stay within the - g
+20% Ep, (at least circular
ones).

0.1

0ot

« The existence of a general o001
distribution function would imply o T L o
a less conservative risk estimate e
during re-entries.
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Post re-entry analysis:

Learning from observations

e For larger and heavier spacecraft the chance exists that their
interaction with the atmosphere is observed and/or parts are retrieved.

« A few hundred of re-entry events have been reported and
correlated with events

e Less than a hundred re-entry events have occurred where
debris pieces were at least tentatively identified as belonging
to a spacecraft (the majority pressure vessels).

« As independent validation tool for break-up simulation software,
observations of sightings can be forward modeled:

« Observation model for heating from the break-up event.

. Camera and filters can be model.
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Post re-entry analysis:

Learning from observations

* Observations of the explosive break-up of ATV-1
e ESA’s ESESAM code used as break-up simulation software,

« Observer is an airborne campaign.
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Post re-entry analysis:

Learning from observations

 Observations of the thermal-mechanical break-up of GOCE
e ESA’s Scarab code used as break-up simulation software,

« Observer is a lucky person on the Falkland islands.

100000

§ 10000
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Post re-entry analysis:

Fragment identification

e Re-entry event observed
over Spain on 2016-11-03
at 6UTC.

 Five piece found between
the 3@ and 16" of Nov.
2015 were tentatively
attributed to the event

+60

+50 |

+40 |

Lat [deg]

o0 L | ¢ The ground track can help

to identified the source

+10 | 1 object
e Object oriented Dbreak-up
"0 ” - - - ” o code helps to understand
Lon [deg] the event and postulated

three more large pieces.
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Post re-entry analysis:

Fragment identification

e Re-entry event observed
| over Spain on 2016-11-03
at 6UTC.

 Five piece found between
the 3@ and 16" of Nov.
2015 were tentatively
attributed to the event

+60

+50

+40 |

+
o
o

Lat [deg]

o | | ¢ A six piece (pressure tank)
was found within
1o | ] reasonable Ilimits of the
prediction based on it
+0—50 —alm —éo +L’IJ +2|0 +c|10 +60 phySICaI propertles on
Lon [deg] 2016-03-08
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Re-entry Prediction Service:

Conclusion

e Automated re-entry prediction near the epoch of re-entry can reach
state-of-the-art quality in terms of Ejp.

« This level of accuracy is required for the use of the data by civil
protection agencies or to facility observations, but only for large objects.

« The service is available for registered users since 1999.

« ESA’s service processes 170000 objects in under 10 hours daily on a
single core, so there is room for improvements:

 Pre-filtering of orbital states to aid the shooting method,
« 3 DoF versus 6DoF analysis for objects with a low B parameter,

« Continued modelling of break-up events.
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