

The Pointing Error Engineering Tool (PEET): From Prototype to Release Version

Marc Hirth⁽¹⁾, Haifeng Su⁽¹⁾, Thomas Ott⁽²⁾, Massimo Casasco⁽³⁾, Sohrab Salehi⁽⁴⁾

⁽¹⁾ Astos Solutions GmbH
 ⁽²⁾ Airbus DS – Space Systems
 ⁽³⁾ ESA, ESTEC
 ⁽⁴⁾ Rhea System for ESA

PEEH Methodology in the Tool

•

Outline

Software Overview

Introduction

- "Advanced Statistical Method"
- Conclusion

Introduction

- 2008:Control performance standard ECSS-ST-60-10C
- 2011: ESA Pointing Error Engineering Handbook (PEEH)
- 2012: PEET prototype released
 - 2013: Prototype update for formation-flying missions
- 2014-2016: Development of extended framework

Motivation

More and more stringent performance requirements in ESA projects (e.g. scientific or laser-communication missions)

Necessity for clear and accurate pointing error engineering methodology

Why PEEH?

Why PEET?

- Systematic and user-friendly application of methodology
- Automated performance management process
- Replacement of "manual" computations
- Support dissemination of the methodology

© 2016 Astos Solutions GmbH

PEEH Methodology in the Tool

PEEH Methodology

PEEH provides explicit guideline for requirement definition and evaluation of error budgets using dedicated analysis steps:

- "AST-0" : Requirement specification
- AST-1: Error source characterization
- AST-2: Transfer analysis
- AST-3: Error index contribution analysis
- AST-4: Error evaluation

The PEET workflow is fully compatible with the methodology and provides all related parameters and setup options

AST-0: Requirement specification

Unambiguous definition of requirements by parameters dependent on requirement type

- Statistical requirements
 - Max. error value (per axis or half-cone)
 - Related level of confidence
 - Metric for time-windowed errors
 - Statistical interpretation
 - Spectral requirements
 - Spectral requirement function (PSD upper bound)
 - (Metric for time-windowed errors)

© 2016 Astos Solutions GmbH

9

Identification of potential error sources and classification based on characteristic properties:

AST-1: Error Source Characterization

- Random variables
 - Time-constant & Time-random
- Periodic errors
- Drift errors
- Random processes
 - BLWN or PSD

Statistical distributions describe temporal behavior and/or ensemble distribution of parameters

AST-2: Transfer analysis

Determines how initial error sources affect the figure of merit, i.e. the "route" to the final error contribution

- Static systems
 - Generic models
 - Coordinate Transformations, etc.
- Dynamic (LTI) systems
 - Generic models
 - Flexible plant, gyro-stellar estimator
- Feedback systems

Transfer rules dependent on error signal class

AST-3: Error Index Contribution Analysis

Impact of time-windowed errors for all metrics present in ECSS standard (e.g. APE, MPE):

- Frequency domain evaluation
 - Metric expressed as rational transfer functions
 - Applied to periodic and random process errors
- Evaluation according to ECSS rules
 - Random variables

Table B-3: Budget contributions from zero mean Gaussian random errors										
		Distribution								
Index	S.I.	P(e)	μ(e)	σ(e)	Notes					
APE	E	$P(3s) = \frac{1}{3}P(s)$	3 μ	3σ	See text. For P(s), μ and σ_{s} see B.6					
	т	G(0 , swc ²)	0	Swc	G(m,V) = Gaussian with specified mean & variance, swc = worst case s					
	М	$\int G(0,s^2) P(s) ds$	0	(s)	For P(s), µ= and <s> see B.6. For derivation see B.7</s>					

AST-4: Error evaluation

Summation of final error contributions according to the selected statistical method:

- Simplified statistical method (used in prototype)
 - Evaluation based on stat. moments (central limit theorem) and a confidence factor
 - Simplified correlation (full/no correlation)

 $e(68\% / 95\% / 99.7\%) = ``\Sigma|\mu_i| + n_p \cdot \Sigma \sigma_i$, $n_p = 1,2,3$

Advanced statistical method (used in release version)

- Evaluation based on probability density functions & explicit level of confidence values
- Specific correlation between contributions

$$p(e) = \left(\left| \sum_{i=1}^{N_D} e_i \right| \right)$$

$$e_{tot,LoC} = \int_{0}^{LoC/100} p(e) de$$

$$e_{tot,LoC} = \left(\left| \sum_{i=1}^{N_D} e_i \right| \right)$$

Software Overview

Platforms and Requirements

- Designed as extension to Matlab with following requirements:
 - Matlab 2011b and later
 - Control System Toolbox
- Multiple platform support
 - Windows
 - Linux
 - Macintosh
- No "critical" hardware requirements
 - Runs on standard desktop PCs and laptops

Architecture and External Interfaces

- Main components:
 - Java GUI
 - Matlab core algorithms
 - Communication via Java-Matlab Interface (JMI) and XML scenario definition files
- Interfaces:
 - Import from MS Excel spreadsheets
 - Links to Matlab workspace variables
 - Configurable report to MS Excel
- Operation modes:
 - GUI mode
 - Script-base execution controlled by (userdefined) Matlab scripts

Graphical User Interface

Block Database: Select identified error source and system models

System Editor: Define requirements & system interconnections

Block Dialogs: Specify source/system characteristics

ICATT 2016, Darmstadt, Germany

Budget Tree View: Analyze statistics of error signal components

ICATT 2016, Darmstadt, Germany

Breakdown Tree View: Analyze compliance with requirements

🙏 Exampl	eSystem.peet - Requirement Bre	akdown								
APE	▼ Total	▼ X Y Z V LoS	€€	≽ ♥						
	Total Error			Block name: Device C						
	LoS:			Block type: PEC						
				Overall						
				Unit: "						
				LoC: 99.73						
	Error contributions									
				Time-constant:		x	у	z	LoS	
					Requirement		N/A	N/A	N/A	
	System A	System B			Budget	5.856	5.12	5.746	6.751	
	LoS:	LoS:		Time-random:		x	у	z	LoS	
					Requirement		y N/A	N/A	N/A	
					Budget	0.0	0.0	0.0	0.0	
				Total:		x	у	z	LoS	
					Requirement		y N/A	6.0	6.0	
					Budget	5.856	5.12	5.746	6.751	
				CDF Plots						
	Subsystem A	Subsystem B								
	LoS:	LoS:		Time constant						
				1.0						
				0.8		/ /				
				~						
				80 E						
				Ö	XII	1/				
Device A	Device B	Device C				V				
LoS:	LoS:	LoS:		0.2	V/	1				
					//					
				0.0 1	2.0	4.0	6.0	8.0		
						lel (")				
	~ / ~									

Plot Viewer: Detailed result inspection with various plot types

© 2016 Astos Solutions GmbH

ICATT 2016, Darmstadt, Germany

"Advanced Statistical Method"

Background

Simplified statistical method used in software prototype:

- Based on statistical moments (μ , σ) and confidence factors only
- Relies on applicability of central limit theorem
 - For a valid level of confidence evaluation, total error needs to follow (at least nearly) a Gaussian distribution
 - If dominant non-Gaussian errors are present, this leads to significant systematic errors

Limitations of the Simplified Method (1)

Astos

Example:

"The error shall be smaller than X with 99.73% (3σ) probability" (applied to a Gaussian and a uniform distribution)

Limitations of the Simplified Method (2)

Calculation of line-of-sight (LoS) errors:

- PEEH provides derived expression for instantaneous (or deterministic) LoS errors
- ECSS provides approximate solution solution for "statistical" errors (valid for zero-mean Gaussian with closely equal σ)
 - Exact description via PDF

"Careless" application of the first expressions to nonmatching conditions again leads to systematic errors

ICATT 2016, Darmstadt, Germany

$$e_{LOS} = \sqrt{e_x^2 + e_y^2}$$

 $e_{LOS} = \int_0^{LoC} \left(\sqrt{e_x^2 + e_y^2} \right) de$

Limitations of the Simplified Method (3)

Calculation of line-of-sight (LoS) errors: 68,3% LoC

Case		e _{LoS}	PDF	
X: C(0,1)	"Deterministic"	ECSS approx.	"Exact" (num.)	0.8 0.6
X: G(0,1) Y: G(0,1)	-7%	0%	1.5158	$\begin{array}{c} 0.4 \\ 0.2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$
X: G(1,1) Y: G(1,1)	30%	-30%	2.190	$\begin{array}{c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$
X: G(0,1) Y: G(0,2)	-22%	+30%	2.305	$\begin{array}{c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$
X: U(-√3, √3) Y: G(0,1)	-10%	-3%	1.57	$\begin{array}{c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$

Analytical treatment (PDF convolution and CDF determination) in conflict with several constraints:

- SW requirement: No further MATLAB toolboxes shall be used (e.g. the Symbolic Toolbox)
- Even with symbolic computation, closed-form solutions could not be guaranteed (for arbitrarily complex systems)
- With a numerical description of the PDF convolution, the joint PDF of all error sources is required
 - Usually not known by the user
 - In best case, knowledge of (marginal) PDFs and correlation in terms of correlations coefficients expected

Implementation (2)

Therefore, the chosen approach is entirely numerical:

- Sample-based (around 1e6 samples per source, 10000 PDF bins)
- Dedicated inverse transform sampling method allows both "imprinting" correlation and PDF information
 - see paper for more information

 Intrinsic drawback: loss of accuracy with respect to the analytical computation

- Error expected to < 1% in entire computation chain
- Thus safely negligible compared to potentially large systematic errors of simplified method

Conclusion

Conclusion

- PEET is a tool to accurately compute statistical and spectral error budgets (release: mid 2016).
- PEET is not restricted to pointing applications, but can also be used in other engineering fields.
- PEET is well-suited for integration in analysis tool chains with the available Excel & Matlab interfaces.
- PEET files provide much better transparency (model assumptions) and flexibility (model adaption) than purely "tabular" budgets.
- Limitation: PEET cannot explicitly account for non-linearities and transient system behavior, i.e. it shall not be understood as a replacement for E2E simulators.