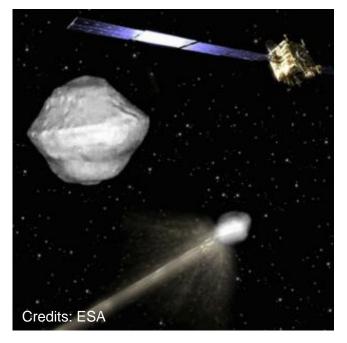


6th International Conference on Astrodynamics Tools and Techniques (ICATT)

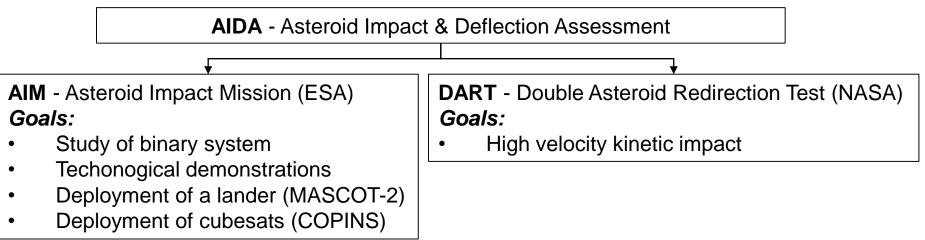
Darmstadt

14 – 17 March 2016

ESA's Asteroid Impact Mission: Mission Analysis and Payload Operations state of the art


<u>Fabio Ferrari</u>*, Michèle Lavagna*, Bastian Burmann[§], Ingo Gerth[§], Marc Scheper[§], Ian Carnelli[#]

- * Politecnico di Milano, Department of Aerospace Science and Technology
- § OHB System AG, Space System Studies Department
- # European Space Agency, General Study Program Office, ESA HQ


- Introduction: Asteroid Impact Mission (AIM)
 - Mission objectives
 - Payloads on board
- Mission analysis
 - Launch window
 - Rendezvous with asteroid
- Close proximity operations

65803 Didymos will transit near Earth (less than 0.1 AU) in late 2022

[Didymos = Didymain + Didymoon]

Fabio Ferrari

AIM

- Scientific goals
 - Characterization of Didymain and Didymoon (shape, mass, dynamics)
 - Geophysical properties of Didymoon (surface, sub-surface, interior structure, mechanical and thermal properties)
- Technological demonstrations
 - Laser-based optical telecommunication (TEX)
 - MASCOT-2 landing
 - Deep-space cubesat network (COPINS)

AIDA

- Planetary defense
 - Momentum transfer assessment
- Scientific goals
 - Fragmentation and re-accumulation dynamics

- VIS: camera used for GNC and science
- TIRI: thermal infra-red imager
- HFR: high-frequency radar to investigate sub-surface properties
- LFR: bi-static low frequency radar, AIM+MASCOT-2
- OPTEL-D: laser communication terminal
- MASCOT-2: lander
- COPINS: cubesats to establish an inter-satellite link

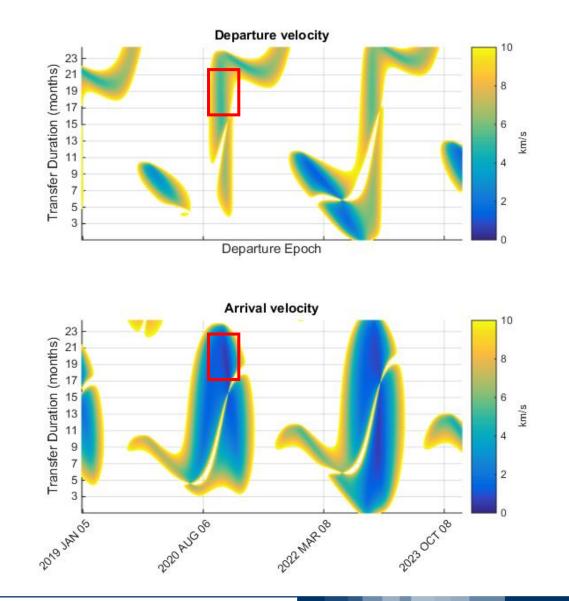
		Diameter [m]	Mass [kg]	Rotation period [h]
Properties of asteroids	Didymain	750	5.2 e11	2.3
	Didymoon	157	4.9 e9	11.9

Heliocentric and binary system orbits

	Semi-major axis	Orbital period
Heliocentric orbit	1.6 AU (1 x 2.2)	2.1 years
Binary system	1.18 km	11.9 hours

Fabio Ferrari

ASSUMPTIONS

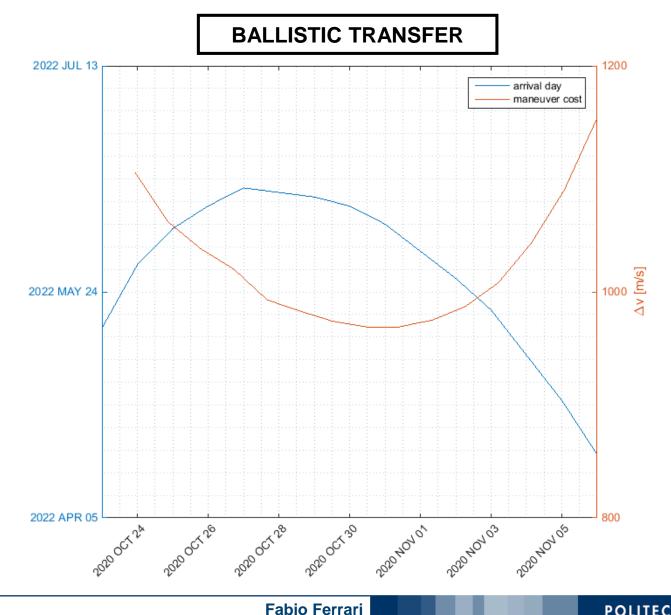

- Keplerian motion between spacecraft and Solar System Barycenter
- Earth and Didymos orbits from Horizons JPL ephemerides

REQUIREMENTS

- Max escape velocity (launcher) = 5.2 km/s
- Max arrival maneuver (AIM) = 1.25 km/s
- Arrival not late than mid 2022
- Departure not before mid 2020

BALLISTIC TR	ANSFER	Day
Departure day	Earliest	2020 October 23 rd
	Latest	2020 November 6 th
Asteroid arrival	Earliest	2022 April 5 th
	Latest	2022 June 16 th

INTERPLANETARY TRANSFER Pork chop plot: ballistic transfer


BALLISTIC TRANSFER

Launch date	2020/10/23	2020/10/24	2020/10/25	2020/10/26	2020/10/27	2020/10/28	2020/10/29	2020/10/30
Escape velocity [km/s]	5.200	5.199	5.199	5.199	5.199	5.199	5.199	5.199
Asteroid arrival	2022/05/16	2022/05/30	2022/06/07	2022/06/12	2022/06/16	2022/06/15	2022/06/14	2022/06/12
Duration [d]	570	583	590	594	596	595	593	589
Arrival manoeuvre [m/s]	1106	1062	1038	1020	993	983	974	969

2020/10/31	2020/11/01	2020/11/02	2020/11/03	2020/11/04	2020/11/05	2020/11/06
5.199	5.199	5.199	5.200	5.199	5.199	5.200
2022/06/08	2022/06/02	2022/05/27	2022/05/20	2022/05/10	2022/04/30	2022/04/18
584	578	571	563	552	541	528
969	975	987	1008	1043	1090	1154
	5.199 2022/06/08 584	5.199 5.199 2022/06/08 2022/06/02 584 578	5.199 5.199 5.199 2022/06/08 2022/06/02 2022/05/27 584 578 571	5.199 5.199 5.199 5.200 2022/06/08 2022/06/02 2022/05/27 2022/05/20 584 578 571 563	5.199 5.199 5.199 5.200 5.199 2022/06/08 2022/06/02 2022/05/27 2022/05/20 2022/05/10 584 578 571 563 552	5.199 5.199 5.199 5.200 5.199 5.199 2022/06/08 2022/06/02 2022/05/27 2022/05/20 2022/05/20 2022/05/10 2022/04/30 584 578 571 563 552 541

One solution per day (best during the day)

INTERPLANETARY TRANSFER Launch window: ballistic transfer

POLITECNICO DI MILANO

OPTIMIZATION

- Arrival on 2022 June 1st
- Departure and arrival time during the day is not fixed
- Optimal solution is found for each day of the extended launch window
- Optimal solution during the ballistic launch window is the ballistic transfer

BALLISTIC TRANSFER	TRANSFER WITH DSM	
2020 October 23 rd - November 6 th	2020 October 17 th - November 9 th	

The launch window with DSM extends of few days before and after the ballistic launch window

TRANSFER WITH DSM: early departure (17-22 October)

Launch date	2020/10/17	2020/10/18	2020/10/19	2020/10/20	2020/10/21	2020/10/22
Escape velocity [km/s]	5.200	5.200	5.200	5.200	5.200	5.200
DSM date	2020/12/18	2020/12/29	2020/12/30	2020/12/18	2020/12/19	2020/12/20
DSM [m/s]	189.6	161.4	135.1	87.2	71.0	32.6
Arrival manoeuvre [m/s]	1054	1053	1052	1060	1056	1062
DSM + arrival [m/s]	1244	1215	1187	1147	1127	1094
Asteroid arrival	2022/06/01	2022/06/01	2022/06/01	2022/06/01	2022/06/01	2022/06/01

One solution per day (optimum during the day)

Fabio Ferrari

TRANSFER WITH DSM: late departure (7-9 November)

		-	-	
Launch date	2020/11/07	2020/11/08	2020/11/09	
Escape velocity [km/s]	5.200	5.200	5.200	
DSM date	2021/01/03	2021/01/04	2021/01/05	
DSM [m/s]	319.5	390.3	540.7	DSM is much high
Arrival manoeuvre [m/s]	789	754	684	for a late departur
DSM + arrival [m/s]	1108	1144	1225	
Asteroid arrival	2022/06/01	2022/06/01	2022/06/01	

One solution per day (optimum during the day)

BALLISTIC TRANSFER								
Launch date	2020/10/23	2020/10/29	2020/10/31	2020/11/02	2020/11/06			
Escape velocity [km/s]	5.200	5.199	5.199	5.199	5.200			
Asteroid arrival	2022/05/16	2022/06/14	2022/06/08	2022/05/27	2022/04/18			
Duration [d]	570	593	584	571	528			
Arrival manoeuvre [m/s]	1106	974	969	987	1154			
ARRIVAL MANEUVER								
Laune	ch date	2020	/10/31	2020/11/06				
Asteroi	d arrival	2022 JUN	23 - JUL 3	2022 MAY 7 - 2	14			
Total arrival m	anoeuvre [m/s]	960 -	- 1250	1147 - 1250				

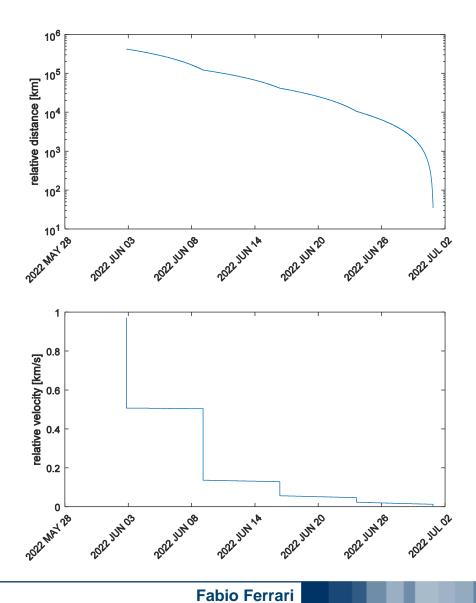
NOMINAL SEQUENCE 5 maneuvers, 1 week apart

	ARRIVAL MAN	IEUVER	Day
	Departure day	Earliest	2020 October 23 rd
•		Latest	2020 November 6 th
	Asteroid arrival	Earliest	2022 May 7 th
		Latest	2022 July 3 rd

DEPARTURE

- Early or late launch opportunities will result in an early arrival
- Departure day constraints the arrival day
- Departure day constraints the maneuver cost

ARRIVAL MANEUVER: design parameters (nominal)


- Number of maneuvers (5)
- Time between two consecutive maneuvers (1 week)

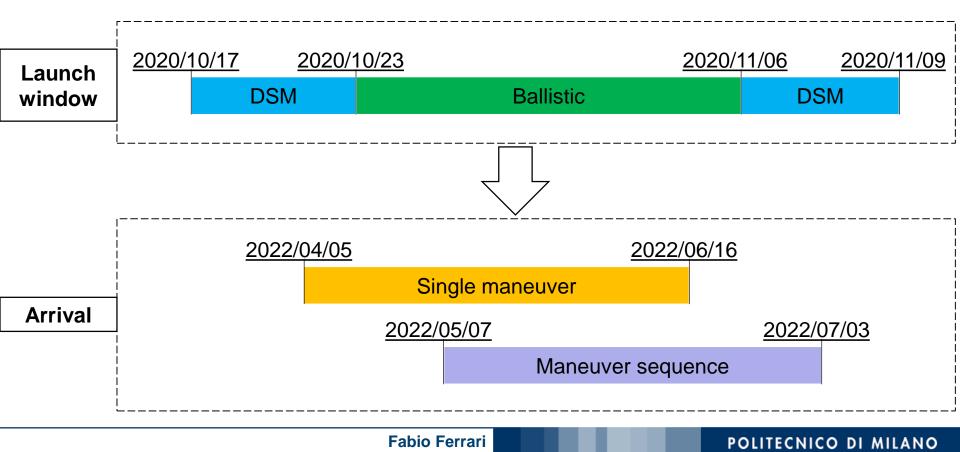
Ballistic transfer with departure on 2020 October 31st

manoeuvre #	date	Δv [m/s]	Distance from asteroid [km]
1	2022 JUN 03	469.6	4.21E+05
2	2022 JUN 10	378.5	1.21E+05
3	2022 JUN 17	75.0	4.16E+04
4	2022 JUN 24	25.0	1.05E+04
5	2022 JUL 01	12.5	35
TOT Δv [m/s]		960.6	

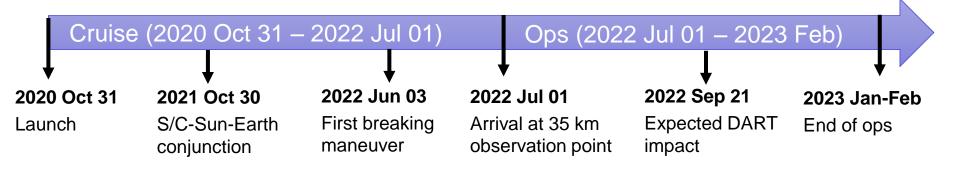
Fabio Ferrari

INTERPLANETARY TRANSFER Nominal arrival sequence

POLITECNICO DI MILANO


Ballistic transfer with departure on 2020 November 6th

manoeuvre #	date	Δv [m/s]	Distance from asteroid [km]
1	2022 APR 14	584.7	4.52E+05
2	2022 APR 21	449.4	1.08E+05
3	2022 APR 28	75.0	3.51E+04
4	2022 MAY 05	25.0	8.86E+03
5	2022 MAY 12	12.5	35
TOT Δv [m/s]		1146.6	



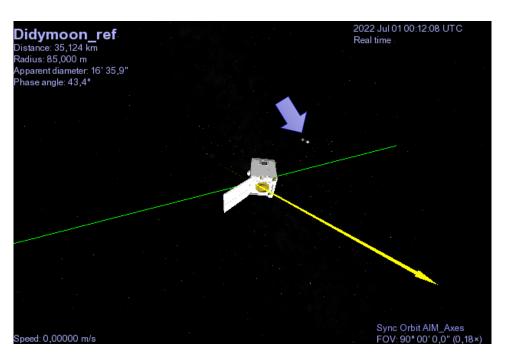
ASSUMPTIONS

- Keplerian motion between spacecraft and Solar System Barycenter
- Earth and Didymos orbits from Horizons JPL ephemerides
- Max escape velocity (launcher) = 5.2 km/s
- Max arrival maneuver (AIM) = 1.25 km/s

Cruise

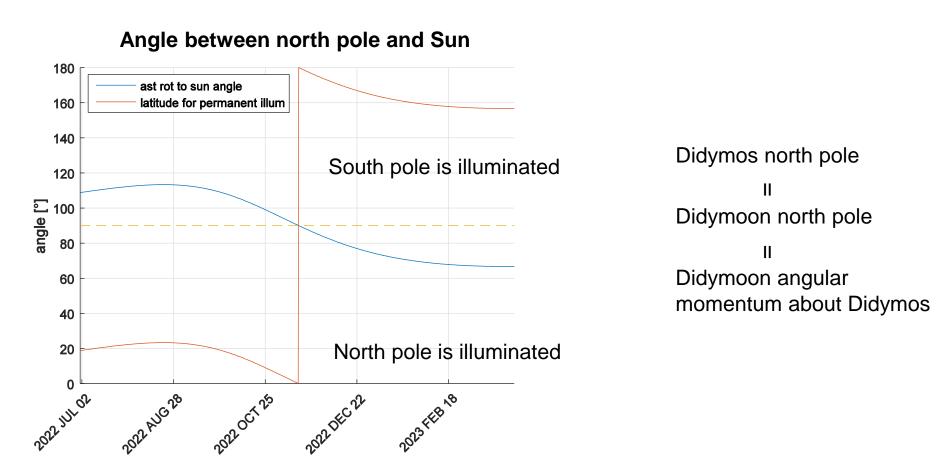
- Launch phase
- Deep space trajectory
- Breaking sequence (5 maneuvers with one week interval between them)

Operations at asteroid


- Early Characterization Phase
- Detailed Characterization Phase 1
- COPINS release
- MASCOT-2 release
- Detailed Characterization Phase 2
- Impact observation
- Detailed Characterization Phase 3
- Disposal

ASTEROID OPERATIONS Early Characterization Phase

Fabio Ferrari


Operations at asteroid

- Early Characterization Phase
- Detailed Characterization Phase 1
- COPINS release
- MASCOT-2 release
- Detailed Characterization Phase 2
- Impact observation
- Detailed Characterization Phase 3
- Disposal

DIDYMOS ILLUMINATION CONSTRAINTS

Pole illumination: it refers to Didymos and Didymoon as well

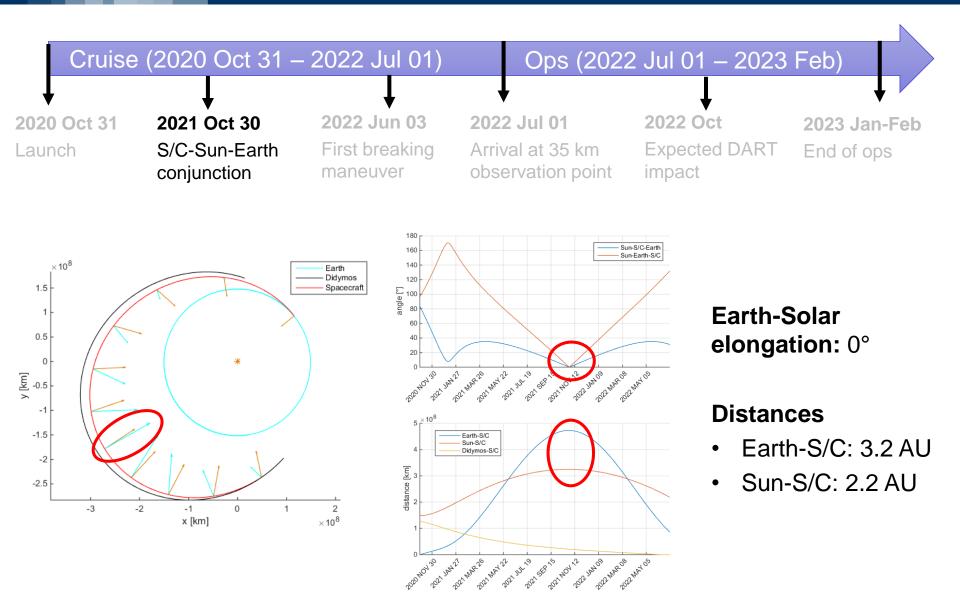
		Without margin [m/s]	Margin	With Margin [m/s]
Launcher insertion correction		25	50%	37.5
Interplanetary transfer	Arrival (broken manoeuvre)	469.6	5%	493.1
		378.5	5%	397.4
		75.2	5%	79.0
		26.0	5%	27.3
		18.9	5%	19.8
	Navigation corrections (3σ)	19.2	50%	28.8
	TOT arrival (nominal case)	987.4		1045.4
	Max DV in the launch window	1250	5%	1312.5
Station keeping (10 months)		9.4	10 m/s	19.4
Close-proximity operations		100	0%	100
Decommissioning		0.4	10 m/s	10.4
ТОТ				1479.8

23

6th International Conference on Astrodynamics Tools and Techniques (ICATT)

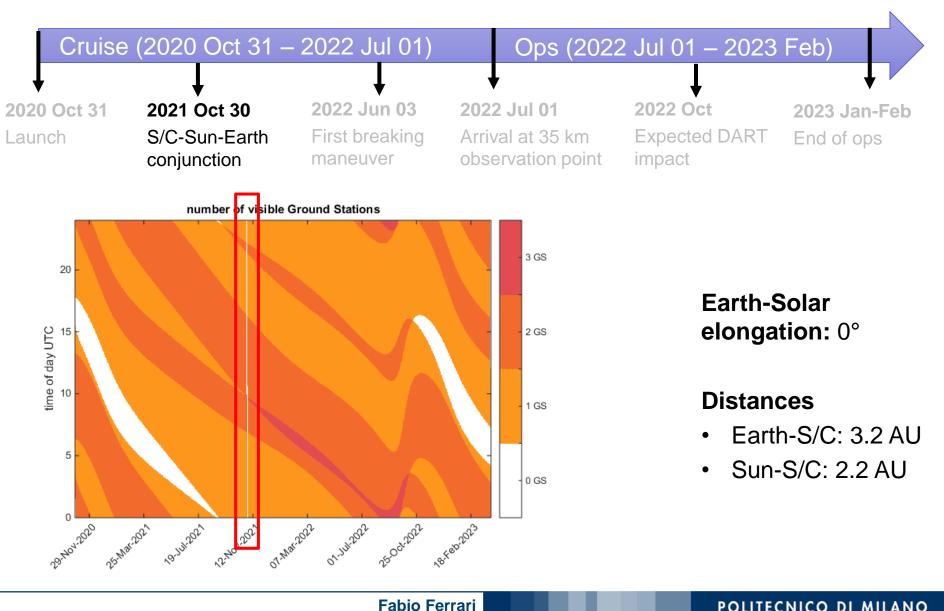
Darmstadt

14 - 17 March 2016



ESA's Asteroid Impact Mission: Mission Analysis and Payload Operations state of the art

<u>Fabio Ferrari</u>*, Michèle Lavagna*, Bastian Burmann[§], Ingo Gerth[§], Marc Scheper[§], Ian Carnelli[#]


- * Politecnico di Milano, Department of Aerospace Science and Technology
- § OHB System AG, Space System Studies Department
- # European Space Agency, General Study Program Office, ESA HQ

POLITECNICO DI MILANO

25

Fabio Ferrari

