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65803 Didymos will transit near Earth 

(less than 0.1 AU) in late 2022

[ Didymos = Didymain + Didymoon ]

AIDA - Asteroid Impact & Deflection Assessment

AIM - Asteroid Impact Mission (ESA)

Goals:

• Study of binary system

• Deployment of a lander (MASCOT-2)

• Deployment of cubesats (COPINS)

DART - Double Asteroid Redirection Test (NASA)

Goals:

• High velocity kinetic impact

Asteroid Impact Mission (AIM)

Credits: ESA



Fabio Ferrari

4MASCOT-2 landing highlights

 MASCOT-2 shall land on the smaller asteroid (Didymoon)

 MASCOT-2 is a passive probe

o No actuators for trajectory control

o No actuators or devices for anchoring to the surface

 Extremely low gravity field on Didymoon’s surface

o MASCOT-2 can bounce but it shall stay on the surface

 MASCOT-2 release point shall be safe from AIM spacecraft point of view
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5Didymos system

Diameter [m] Mass [kg]

Didymain 775 5.2 e11

Didymoon 163 4.8 e9

Credits: ESA

1.18 km

Two orders of magnitude lower 

than 67/P C-G (Rosetta/Philae)
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6Didymos system

Diameter [m] Mass [kg]

Didymain 775 5.2 e11

Didymoon 163 4.8 e9

Credits: ESA

1.18 km

Four orders of magnitude lower 

than 67/P C-G (Rosetta/Philae) 

+ Didymain’s perturbation
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7Didymos system

Gravity model

Diameter [m] Mass [kg]

Didymain 775 5.2 e11

Didymoon 163 4.8 e9

L* 1.18 km

µ 9.2 e-3

T 11.92 h
Credits: ESA

1.18 km

Three-body system

CR3BP to model the motion of 

the asteroids’ center of mass

MASCOT-2 dynamics
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Gravity source Dynamical model

Didymain (sphere) + Didymoon (sphere) S1+S2 (CR3BP)

Didymain (sphere) + Didymoon (ellipsoid) S1+E2

Didymain (polyhedron) + Didymoon (ellipsoid) P1+E2

S1+E2 P1+E2

8Didymos system

Gravity model

CR3BP to model the motion of the asteroids’ center of mass



Fabio Ferrari

9Didymos system

Dynamical perturbations

Relevant effects at 1 km [𝐦/𝐬𝟐]

Acceleration due to Didymos system’s gravity e-5

Acceleration due to SRP on MASCOT-2 lander e-8

Perturbation due to Sun’s gravity (third body) e-11

Perturbation due to Earth’s gravity (third body) e-13

No relevant differences found between 

S1+E2 and P1+E2 modeling

Irregularities in Didymos gravity field 

are the most relevant perturbations

Not relevant for 

MASCOT-2 scenario
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10MASCOT-2 landing design

Requirements

 MASCOT-2 shall land on the smaller asteroid (Didymoon)

 MASCOT-2 is a passive probe

o No actuators for trajectory control

o No actuators or devices for anchoring to the surface

 Extremely low gravity field on Didymoon’s surface

o MASCOT-2 can bounce but it shall stay on the surface

 MASCOT-2 release point shall be safe from AIM spacecraft point of view

Ballistic descent with no escape after bouncing 𝑣𝑎𝑓𝑡𝑒𝑟𝑇𝐷 < 𝑣𝑒𝑠𝑐
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11Escape velocity from Didymoon’s surface

Theoretical limits

Values to escape Didymoon’s SOI 

(or neighborhood) 

Minimum energy to land / escape: through L1 point

The escape velocity is the touch down velocity 

for a pure ballistic landing from the SOI

𝑣𝑇𝐷 ≥ 𝑣𝑒𝑠𝑐

they depend on latitude and longitude

It depends on latitude

Dynamical model 𝐯𝐞𝐬𝐜 [𝐜𝐦/𝐬]

S2 7.70

S1+S2 4.95

S1+E2 4.58

P1+E2 4.57
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12Touch-down velocity

Monte Carlo backwards integration

𝑣𝑇𝐷 < 𝑣𝐿1

Energy

Minimum 𝐯𝐭𝐝 [𝐜𝐦/𝐬]

Through L1 neck (𝒗𝐋𝟏) Through L2 neck (𝒗𝐋𝟐)

S1+S2 4.95 5.23

S1+E2 4.58 5.11

P1+E2 4.57 5.11

𝑣𝐿1 < 𝑣𝑇𝐷 < 𝑣𝐿2 𝑣𝑇𝐷 > 𝑣𝐿2
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13MASCOT-2 landing design

Trajectory selection

Requirements

 Ballistic descent with no escape after bouncing

𝑣𝑎𝑓𝑡𝑒𝑟𝑇𝐷 < 𝑣𝑒𝑠𝑐

 Safety: release far from Didymoon constraints the dynamics to

𝑣𝑇𝐷 ≥ 𝑣𝑒𝑠𝑐

Design strategy

 Keep 𝑣𝑇𝐷 as low as possible

Trajectories with low 𝑣𝑇𝐷 are those passing through the L1 or L2 neck with low energy

(L2 neck is considered for safer release)

Manifolds associated to L2 point
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14MASCOT-2 landing design

Example of landing solution

Release from 200 m altitude

Manifold

 High time of flight

 Not robust after release dispersion
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15MASCOT-2 landing design

Example of landing solution

Near the manifold

 Low time of flight

 Robust after release dispersion

Release from 200 m altitude
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16MASCOT-2 landing design

Assumptions

BALLISTIC DESCENT: MASCOT-2 dispersion at release

 Navigation error

 Release mechanism error

o 5 deg (1σ) half cone angle around nominal release direction

o 0.5 cm/s (1σ) uncertainty in release velocity 

BOUNCING DYNAMICS: velocity after touch down

 Direction according to soil inclination

o Uniform distribution in azimuth

o Gaussian distribution in elevation: 90 ± 70 deg (µ ± 3σ)

 Norm of velocity dumped according to the restitution coefficient

𝜂 =
𝑣𝑎𝑓𝑡𝑒𝑟𝑇𝐷

𝑣𝑏𝑒𝑓𝑜𝑟𝑒𝑇𝐷
= 0.9 ⋅ 0.6 = 0.54

asteroid’s soil
lander’s structure
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Escape probability

 From release up to escape or stay on Didymoon’s surface

 Monte Carlo simulation (200000 cases for each release point)

 S1+E2 model used (equivalent to P1+E2)

Release from 200 m altitude Release from 250 m altitude



Fabio Ferrari

18MASCOT-2 landing design

Escape probability

Release altitude 
[m]

Escaped trajectories [%]

After release After touch down TOT

100 1.14 0.00 1.14

150 1.26 0.00 1.27

200 3.18 0.01 3.19

250 5.79 0.04 5.83

300 6.03 0.32 6.35

 From release up to escape or stay on Didymoon’s surface

 Monte Carlo simulation (200000 cases for each release point)

 S1+E2 model used (equivalent to P1+E2)



Fabio Ferrari

19MASCOT-2 landing design

Landing dispersion at rest

Release altitude 
[m]

Dispersion at rest (µ ± 3σ)

Latitude [deg] Longitude [deg] Tof [h]

100 0.2 ± 32.5 23.3 ± 87.9 1.81 ± 0.95

150 0.0 ± 31.5 20.1 ± 66.7 2.19 ± 1.06

200 0.1 ± 32.9 19.7 ± 60.5 2.50 ± 1.21

250 -0.1 ± 36.6 20.5 ± 64.8 2.77 ± 1.41

300 0.1 ± 44.3 19.5 ± 86.0 2.95 ± 1.35

 From release up to rest on Didymoon’s surface: outgoing vertical velocity 

lower than 0.5 cm/s

 Monte Carlo simulation (200000 cases for each release point)

 S1+E2 model used (equivalent to P1+E2)
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20MASCOT-2 landing design

Landing dispersion at rest: release from 200 m

Release altitude [m]
Dispersion at rest (µ ± 3σ)

Latitude [deg] Longitude [deg] Tof [h]

200 0.1 ± 32.9 19.7 ± 60.5 2.50 ± 1.21
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21MASCOT-2 landing design

Landing dispersion at rest: release from 200 m

Release altitude [m]
Dispersion at rest (µ ± 3σ)

Latitude [deg] Longitude [deg] Tof [h]

200 0.1 ± 32.9 19.7 ± 60.5 2.50 ± 1.21
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Conclusion

Summary

o The main perturbing action is due to the uncertainty on Didymos/Didymoon gravity field

o Higher successful landing probability for lower release points

o Landing dispersion at rest is confined within a certain latitude-longitude band

o Good results with current assumptions on release dispersion, soil uncertainty and restitution 

coefficient 

Release altitude [m] Successful probability [%]

100 98.86

150 98.73

200 96.81

250 94.17

300 93.65
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