

6th International Conference on Astrodynamics Tools and Techniques (ICATT)

Darmstadt

14 – 17 March 2016

Coupling High Fidelity Body Modeling with Non-Keplerian Dynamics to Design AIM-MASCOT-2 Landing Trajectories on Didymos Binary Asteroid

Fabio Ferrari*, Michèle Lavagna*, Ian Carnelli§

* Politecnico di Milano, Department of Aerospace Science and Technology

§ European Space Agency, General Study Program Office, ESA HQ

- Introduction: AIM and MASCOT-2 landing
- Dynamical environment around Didymos system
 - o Gravity model
 - Estimate of dynamical perturbations
- Design of MASCOT-2 ballistic descent
 - o Requirements
 - o Assumptions
 - Escape velocities in the three-body system
 - Sensitivity analyses
 - o Successful landing probability
 - Landing dispersion at rest

2

65803 Didymos will transit near Earth (less than 0.1 AU) in late 2022

[Didymos = Didymain + Didymoon]

3

MASCOT-2 landing highlights

- MASCOT-2 shall land on the smaller asteroid (Didymoon)
- MASCOT-2 is a passive probe
 - No actuators for trajectory control
 - No actuators or devices for anchoring to the surface
- Extremely low gravity field on Didymoon's surface
 - MASCOT-2 can bounce but it shall stay on the surface
- MASCOT-2 release point shall be safe from AIM spacecraft point of view

	Diameter [m]	Mass [kg]	
Didymain	775	5.2 e11	
Didymoon	163	4.8 e9	

Two orders of magnitude lower than 67/P C-G (Rosetta/Philae)

5

	Diameter [m]	Mass [kg]
Didymain	775	5.2 e11
Didymoon	163	4.8 e9

Four orders of magnitude lower than 67/P C-G (Rosetta/Philae) + Didymain's perturbation

	Diameter [m]	Mass [kg]
Didymain	775	5.2 e11
Didymoon	163	4.8 e9

CR3BP to model the motion of the asteroids' center of mass

CR3BP to model the motion of the asteroids' center of mass		
Gravity source	Dynamical model	
Didymain (sphere) + Didymoon (sphere)	S1+S2 (CR3BP)	
Didymain (sphere) + Didymoon (ellipsoid)	S1+E2	
Didymain (polyhedron) + Didymoon (ellipsoid)	P1+E2	

POLITECNICO DI MILANO

٦

Fabio Ferrari

Relevant effects at 1 km	
Acceleration due to Didymos system's gravity	e-5
Acceleration due to SRP on MASCOT-2 lander	e-8
Perturbation due to Sun's gravity (third body)	e-11
Perturbation due to Earth's gravity (third body)	e-13

Fabio Ferrari

Not relevant for MASCOT-2 scenario

150 --- S1-S2 S1-E2 P1-E2 100 50 y [m] 0 -50 -100 1100 1150 1200 1250 1300 1350 1400 1450 x [m]

Irregularities in Didymos gravity field are the most relevant perturbations

No relevant differences found between S1+E2 and P1+E2 modeling

- MASCOT-2 shall land on the smaller asteroid (Didymoon)
- MASCOT-2 is a passive probe
 - No actuators for trajectory control
 - No actuators or devices for anchoring to the surface
- Extremely low gravity field on Didymoon's surface
 - MASCOT-2 can bounce but it shall stay on the surface
- MASCOT-2 release point shall be safe from AIM spacecraft point of view

Ballistic descent with no escape after bouncing

Escape velocity from Didymoon's surface Theoretical limits

Fabio Ferrari

The escape velocity is the touch down velocity for a pure ballistic landing from the SOI

Values to escape Didymoon's SOI (or neighborhood)

Minimum energy to land / escape: through L1 point

11

Touch-down velocityMonte Carlo backwards integration

	Minimum v _{td} [cm/s]	
	Through L1 neck (v_{L1})	Through L2 neck (v_{L2})
S1+S2	4.95	5.23
S1+E2	4.58	5.11
P1+E2	4.57	5.11

Energy

Fabio Ferrari

Requirements

Ballistic descent with no escape after bouncing

 $v_{after_{TD}} < v_{esc}$

Safety: release far from Didymoon constraints the dynamics to

 $v_{TD} \ge v_{esc}$

Design strategy

• Keep v_{TD} as low as possible

Trajectories with low v_{TD} are those passing through the L1 or L2 neck with low energy (L2 neck is considered for safer release)

Manifolds associated to L2 point

MASCOT-2 landing design Example of landing solution

Release from 200 m altitude

Manifold

- High time of flight
- Not robust after release dispersion

14

MASCOT-2 landing design Example of landing solution

Release from 200 m altitude

Near the manifold

- Low time of flight
- Robust after release dispersion

BALLISTIC DESCENT: MASCOT-2 dispersion at release

- Navigation error
- Release mechanism error
 - \circ 5 deg (1 σ) half cone angle around nominal release direction
 - \circ 0.5 cm/s (1 σ) uncertainty in release velocity

BOUNCING DYNAMICS: velocity after touch down

- Direction according to soil inclination
 - o Uniform distribution in azimuth
 - $\circ~$ Gaussian distribution in elevation: 90 ± 70 deg (µ ± 3 σ)
- Norm of velocity dumped according to the restitution coefficient

$$\eta = \frac{v_{afterTD}}{v_{beforeTD}} = 0.54$$
asteroid's soil
ander's structure

Fabio Ferrari

- From release up to escape or stay on Didymoon's surface
- Monte Carlo simulation (200000 cases for each release point)
- S1+E2 model used (equivalent to P1+E2)

Fabio Ferrari

- From release up to escape or stay on Didymoon's surface
- Monte Carlo simulation (200000 cases for each release point)
- S1+E2 model used (equivalent to P1+E2)

Release altitude [m]	Escaped trajectories [%]		
	After release	After touch down	тот
100	1.14	0.00	1.14
150	1.26	0.00	1.27
200	3.18	0.01	3.19
250	5.79	0.04	5.83
300	6.03	0.32	6.35

- From release up to rest on Didymoon's surface: outgoing vertical velocity lower than 0.5 cm/s
- Monte Carlo simulation (200000 cases for each release point)
- S1+E2 model used (equivalent to P1+E2)

Release altitude [m]	Dispersion at rest ($\mu \pm 3\sigma$)		
	Latitude [deg]	Longitude [deg]	Tof [h]
100	0.2 ± 32.5	23.3 ± 87.9	1.81 ± 0.95
150	0.0 ± 31.5	20.1 ± 66.7	2.19 ± 1.06
200	0.1 ± 32.9	19.7 ± 60.5	2.50 ± 1.21
250	-0.1 ± 36.6	20.5 ± 64.8	2.77 ± 1.41
300	0.1 ± 44.3	19.5 ± 86.0	2.95 ± 1.35

Anding dispersion at rest: release from 200 m

Release altitude [m]	Dispersion at rest ($\mu \pm 3\sigma$)		
	Latitude [deg]	Longitude [deg]	Tof [h]
200	0.1 ± 32.9	19.7 ± 60.5	2.50 ± 1.21

20

MASCOT-2 landing design

Landing dispersion at rest: release from 200 m

Release altitude [m]	Dispersion at rest ($\mu \pm 3\sigma$)		
	Latitude [deg]	Longitude [deg]	Tof [h]
200	0.1 ± 32.9	19.7 ± 60.5	2.50 ± 1.21

Summary

- The main perturbing action is due to the uncertainty on Didymos/Didymoon gravity field
- Higher successful landing probability for lower release points
- Landing dispersion at rest is confined within a certain latitude-longitude band
- Good results with current assumptions on release dispersion, soil uncertainty and restitution coefficient

Release altitude [m]	Successful probability [%]
100	98.86
150	98.73
200	96.81
250	94.17
300	93.65

6th International Conference on Astrodynamics Tools and Techniques (ICATT)

Darmstadt

14 – 17 March 2016

Coupling High Fidelity Body Modeling with Non-Keplerian Dynamics to Design AIM-MASCOT-2 Landing Trajectories on Didymos Binary Asteroid

Fabio Ferrari*, Michèle Lavagna*, Ian Carnelli§

* Politecnico di Milano, Department of Aerospace Science and Technology

§ European Space Agency, General Study Program Office, ESA HQ