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ABSTRACT

The Asteroid Impact Mission (AIM) includes among its pri-
mary objectives the release of a lander (MASCOT-2) on the
surface of the smaller asteroid of binary couple 65803 Didy-
mos. The work here presented is performed under ESA con-
tract, in the frame of phase A mission design of AIM space-
craft. The paper focuses on the landing-related part of the
design and presents the on-going work concerning the release
strategy adopted to fulfill mission design requirements. The
dynamics of the spacecraft are modeled using the most up-
to-date gravity model of Didymos system, based on shape
models of the two asteroids. Descent trajectories are selected
by exploiting manifold dynamics associated to the peculiar
three-body environment in the proximity of Didymos.

Index Terms— Binary asteroid, non-Keplerian dynam-
ics, ballistic landing, AIM, three-body problem

1. INTRODUCTION

The Asteroid Impact Mission (AIM) [1, 2, 3] is a mission by
ESA, planned to be the first to rendezvous with a binary aster-
oid. AIM mission objectives includes both scientific investi-
gations and technological demonstrations. The mission is part
of the Asteroid Impact & Deflection Assessment (AIDA) [4,
5, 6], a joint cooperation between ESA and NASA, devoted
to assess the effectiveness in deflecting the heliocentric path
of a threatening Near Earth Asteroid (NEA) for planetary de-
fense purpose. The target of the mission is near-Earth binary
asteroid 65803 Didymos [7], whose asteroids are informally
called Didymain (bigger asteroid) and Didymoon (smaller as-
teroid). The goal of AIDA is to study the effects of a kinetic
impact on the surface of Didymoon. To this purpose, together
with AIM, the AIDA mission includes DART (Double Aster-
oid Redirection Test) [8, 9, 10], the kinetic impactor, designed
by NASA.

The primary objectives of AIM include the detailed study
and characterization of the binary couple. Among these, the
internal composition of the smaller asteroid will be deter-

mined by means of low frequency radar tomography. Simi-
larly to what done with the CONSERT instrument [11], on
board the ESA’s Rosetta mission [12], the radar will include
a lander-orbiter architecture to host both transmitters and
receivers. Rosetta mission highlighted the challenges of de-
signing close proximity trajectories and to land a probe on
the surface of an extremely irregular body such as comet
67P/Churyumov-Gerasimenko [13], whose shape and mass
distribution were completely unknown and unexpected during
the mission design phase. In that case, the Philae lander [14]
release was challenged by the highly perturbed dynamical en-
vironment in the proximity of the comet and its very low and
irregular gravity field. In analogy with the Rosetta mission,
AIM will deploy a small and passive probe (MASCOT-2, with
clear heritage from MASCOT [15], on board the Hayabusa
2 mission [16]) that will reach the surface of a largely un-
known object after a purely ballistic descent. MASCOT-2
lander does not feature any anchoring mechanism and this
makes the release even more challenging since Didymos sys-
tem’s gravity field is expected to be weaker, with an escape
velocity from Didymoon’s surface of about 4-6 cm/s, being
the asteroids estimated to be nearly two orders of magnitude
less massive than comet 67P/Churyumov-Gerasimenko. In
addition, the presence of two gravitational attractors makes
the gravity field in the close proximity of the couple highly
unstable and chaotic.

The paper proposes an effective strategy for MASCOT-2
release, beneficial for the mission analysis and operations
design points of view. The AIM scenario is presented as a
perfect case of study, but the methodology applies to any
asteroid/small body scenario. In particular, the landing tra-
jectory and dynamics of MASCOT-2 is studied during close-
proximity operations using the highest up-to-date fidelity
model of Didymos. The paper presents some updates on the
work the authors are currently performing during the phase
A/B1 design of AIM, under ESA contract [17, 18, 19], in
consortium with OHB System AG, and Spin.Works. From
the orbital mechanics point of view, the binary system is
naturally modeled as a three-body system and solutions are



studied within the frame of the Restricted Three-Body Prob-
lem modeling. Shape-based models are used to model the
gravitational contribution of the two asteroids refined models
are built by combining them to reproduce the gravity field
in the proximity of the binary couple. The purpose of the
design strategy is to take advantage of the presence of two
gravitational attractors to find effective landing solutions. The
increased complexity because of the two gravity sources is
here read as a potential opportunity to be exploited through
the three-body problem modeling, which opens to a vari-
ety of dynamical solutions not available whenever a single
attractor is dealt with. Three-body solutions are computed
for Didymos binary system and suitable trajectories to land
MASCOT-2 on the surface of the secondary are selected.
More in detail, the motion close to the Lagrangian points is
exploited: stable manifolds associated to Halo and Lyapunov
orbits, have been propagated in the high-fidelity dynamical
environment and suitable solutions are selected to guarantee
soft landing on the secondary asteroid. The dynamics of the
lander is propagated from release up to rest on the surface of
the asteroid.

2. MASCOT-2 DYNAMICS

This section discusses the model in use to reproduce the
dynamics of MASCOT-2 lander. The modeling strategy is
based on a modified Circular Restricted Three-Body Problem
(CR3BP) formulation. Although most of the working as-
sumptions included in the CR3BP are kept, a different model
of the gravity field produced by the two asteroids is imple-
mented. Section 2.1 introduces the basics on the classical
CR3BP formulation, section 2.2 discusses the implementa-
tion of the gravitational effect due to the asteroids and finally,
section 2.3 presents the modified CR3BP in use to model the
dynamics of MASCOT-2 lander.

2.1. Circular Restricted Three-Body Problem

The restricted three-body problem describes the motion of a
third body, which moves under the gravitational attraction of
two massive bodies (called primaries), but does not influence
their motion. Hence, the two primaries follow a two-body
solution around the barycenter of the system. More in de-
tail, in the circular problem, the primaries are constrained to
move on circular orbits. All three bodies are modeled as point
masses and their dynamics is exhaustively represented by the
motion of their center of mass.

2.1.1. Equations of motion

Equations of motion of the third particle are often expressed
in nondimensional form, with respect to a non-inertial frame,
which rotates together with the primaries [20]. In this frame
the primaries (referenced as P1 and P2) lie on the x axis and

have fixed position: P1=(−µ,0,0) and P2=(1 − µ,0,0), where
µ is the mass ratio between the two primaries, defined as

µ =
M2

M1 +M2
(1)

withM1 andM2 being the masses of the primaries andM1 >
M2. It is known that the nondimensional form of the equa-
tions of motion depends only on parameter µ, and can be
written as 

ẍ = x+ 2ẏ + U1x + U2x

ÿ = y − 2ẋ+ U1y + U2y

z̈ = U1z + U2z

(2)

where the subscript (·)x, (·)y or (·)z indicate partial deriva-
tives, and U1 and U2 represent the nondimensional point mass
gravitational potential due to P1 and P2

U1 =
1 − µ

r1
(3)

U2 =
µ

r2
(4)

with r1 and r2 being the distance between the body and the
two primaries

r1 =
√

(x+ µ)2 + y2 + z2 (5)

r2 =
√

(x− (1 − µ))2 + y2 + z2 (6)

CR3BP solutions of interest for the case of study are re-
called and used in section 3. The interested reader can refer
to [20, 21, 22] for further detail on CR3BP formulation, its
dynamical properties and solutions.

2.2. Asteroid shape-based gravity models

As mentioned, a modified version of the CR3BP is imple-
mented to model the dynamics of MASCOT-2 as it moves in
the proximity of Didymos binary system. More in detail, the
two asteroids are modeled using shape-based models, instead
of being considered as single point masses.

The most up-to-date model of Didymos system include
a polyhedral shape model for Didymain and an ellipsoidal
shape model for Didymoon. The following paragraphs de-
scribes briefly the strategy in use to reproduce the asteroids
gravity field based on these shape models.

2.2.1. Didymain: constant density polyhedron

The gravity effect of Didymain is modeled using its shape
model1 and its mass distribution is considered to be uniform
(constant density polyhedron). The derivation is based on the
method proposed by Werner and Scheeres [23]. In this case,
the potential function Upoly indicates the exact potential due

1The Didymain shape model is used in the frame of the AIM contract,
however it is still unpublished (courtesy of L. Benner and S. Naidu)



to the shape model, as sum of the contribution due to all faces
and edges of the polyhedron:

Upoly = −1

2
Gρ

( ∑
f∈faces

rf ·Ff ·rf · ωf−

∑
e∈edges

re·Ee·re · Le
) (7)

where G is the universal gravitational constant, ρ is the den-
sity, Ff and Ee are dyads associated to faces and edges of the
polyhedron model, rf and re are vectors from the field point
to faces or edges, Le is the potential of a wire associated to
the edge e and ωf is the solid angle associated to the face f ,
when viewed from the field point.

2.2.2. Didymoon: constant density ellipsoid

Concerning Didymoon, the most updated model of its shape
consider it as an ellipsoid. Accordingly, its gravity effect is
modeled using the potential of a constant density tri-axial el-
lipsoid. The implementation is based on the method proposed
by Scheeres [24]. The potential in the external region of the
ellipsoid with semi-axes α, β, γ, aligned respectively to the
x, y and z axes of the reference frame, and with α ≥ β ≥ γ,
can be written as

Uell = Gρπαβγ

∫ ∞
λ(x,y,z)

Φ(x, y, z;u)
du

∆(u)
(8)

with

Φ(x, y, z;u) =
x2

α2 + u
+

y2

β2 + u
+

z2

γ2 + u
− 1 (9)

∆(u) =
√

(α2 + u)(β2 + u)(γ2 + u) (10)

and with the parameter λ being solution of

Φ(x, y, z;λ(x, y, z)) = 0 (11)

2.3. Modified CR3BP

As mentioned, the dynamics of MASCOT-2 are computed us-
ing a modified CR3BP formulation. The equations of motion
are modified to include the effects of non-spherical mass dis-
tribution of the two primaries: point mass potentials are re-
placed by shape-based potentials in Eq. 2. Modified nondi-
mensional equations of motion read as follows

ẍ = x+ 2ẏ + Upolyx + Uellx

ÿ = y − 2ẋ+ Upolyy + Uelly

z̈ = Upolyz + Uellz

(12)

Note that only the gravity terms due to the two primaries, act-
ing on the third body have been modified. No changes have
been made on the assumptions regarding the motion of the

center of mass of the two primaries and their mutual inter-
action. Concerning the rotation motion of Didymoon, it is
known that the secondary is in a tidally-locked configuration,
such that it shows always the same face to Didymain and it is
aligned to it along its smaller principal axis of inertia.

3. MASCOT-2 RELEASE STRATEGY

MASCOT-2, as its predecessor MASCOT (on board the
Hayabusa mission), is a completely passive probe. It does not
have any device to stop or anchor on Didymoon’s surface
once there. Also, MASCOT-2 does not have any orbit-
controlling device, such as thrusters. For this reason, the
landing trajectory must be carefully designed, and a well-
designed purely ballistic descent is the only chance to reach
Didymoon’s surface. The success of the landing is completely
committed to the choice of the release condition. Moreover,
the safety of AIM spacecraft must be ensured during all
phases of the mission, meaning that the release point shall be
far enough from both asteroids. Given those requirements,
the major challenge related to the MASCOT-2 landing design
appears clearly linked to whether the lander will stay on the
surface after touch down or not. The extremely low-gravity
environment on the surface of Didymoon will likely induce
the probe to bounce until reaching a stable position on Didy-
moon’s surface or, in the worst condition, to escape from the
asteroid’s gravity field. The lander shall be put on a suitable
trajectory, that allows the lander to safely reach Didymoon
with a sufficiently small touch down velocity, such not to be
bounced away. From the designer point of view, the touch
down velocity plays a major role, especially when compared
to the local escape velocity at the asteroid surface.

In order to better understand the dynamical behavior of
the third body in such peculiar environment, it is worth to
highlight the role of the escape velocity for the case of study.
In the frame of the classical restricted two-body problem, the
escape velocity is defined as the minimum velocity to escape
from the gravitational attraction of such body. In that case,
the limiting condition corresponds to the velocity to be in-
serted on a parabolic arc, which reaches the Sphere Of In-
fluence (SOI) of the attractor after infinite time. Conversely,
this means that a body release at the SOI, heading towards
the attractor through a pure ballistic descent, will reach its
surface with a touch down velocity greater or equal than the
minimum escape velocity. This imposes a dynamical con-
straint to the minimum touch down velocity reachable from
outside the SOI. As mentioned, this is valid for the case of re-
stricted two-body problem formulation. However, analogous
concepts can be derived for the case of restricted three-body
problem. The restricted three-body problem is known to ad-
mit no analytical solutions to the equations of motion, but it
is common to look at the qualitative behavior of the motion of
the third body using the energy approach. More in detail, zero
relative velocity surfaces (or) can be derived to qualitatively



bound the motion of the particle in the proximity of the two
primaries (see [20, 21] for further detail). Interesting insights
on MASCOT-2 scenario can be derived by following this ap-
proach. Analogously to the two-body case, it is possible to
define the escape velocity as the minimum velocity allowing
a massless body to escape from Didymoon’s surface. For a
sufficiently low amount of energy, zero relative velocity sur-
faces will separate clearly the region near P1 from the region
near P2: in this case, a particle near P2 is trapped to stay in
its neighborhood. For a higher energy level, a connection be-
tween the two zero relative velocity surfaces appears in corre-
spondence of the L1 point: in this case, the particle is allowed
to move between P1 and P2 regions, by passing through the
L1 neck. With relation to MASCOT-2 scenario, this condi-
tion can be seen as the lowest energy for a particle to escape
from Didymoon’s neighborhood. More in detail, the lowest
energy trajectory to escape from P2 region is the stable man-
ifold associated to L1 point. The velocity at intersection be-
tween the manifold and the surface of Didymoon corresponds
to the minimum escape velocity from Didymoon’s surface.
This kind of information can be used to assess the existence
of a ballistic landing trajectory, from outside the P2 region.
With analogy to the escape problem, a lander can reach the
surface from L1 through its unstable manifold. Both landing
and escaping trajectories are found at the same level of energy,
corresponding to the opening of the L1 neck. It is known that
a higher level of energy allows the opening of the L2 neck. In
this case, the particle has enough energy to escape from the
attraction of both asteroids.

Fig. 1. Stable (blue) and unstable (red) manifolds associated
to L1 and L2 points. Stable manifolds corresponds to min-
imum escape velocity solutions, unstable manifolds to mini-
mum touch down velocity solutions

The L1 case is the lower limiting case in terms of energy
level of the third body. This solution might be applied to
the MASCOT-2 scenario. However, due to safety issues, the

L1 solution is discarded in favor to a safer release from L2
side. It is indeed preferable to release the lander from outside
the asteroid system (L2 side) rather than from between the
two asteroids (L1 side). For these reasons, for MASCOT-2
scenario, low energy trajectories associated to unstable mani-
fold of L2 are investigated as suitable landing solutions. Fig-
ure 1 shows the stable/unstable manifold branches associated
to L1 and L2, corresponding respectively, to minimum es-
cape/touch down velocity solutions.

A purely ballistic landing can be achieved by releasing
MASCOT-2 from the L2 point, on its unstable manifold. This
constraints the release altitude and the AIM spacecraft trajec-
tory to the L2 point. Different and higher release altitudes are
desirable from the mission design point of view. To achieve
this goal, a ballistic transfer can be constructed from outside
the L2 region, by combining stable L2 manifold (from release
point up to L2) with unstable manifold (from L2 to Didy-
moon’s surface).

Fig. 2. Stable (blue) and unstable (red) manifolds associated
to L2 point. Stable manifold branch carries the lander from
release point up to L2, where it jumps on the unstable branch
to proceed towards the Didymoon’s surface

The complete ballistic path of MASCOT-2 from release
up to touch down is shown in Figure 2. It is here highlighted
that manifolds are firstly computed using the classical CR3BP
formulation. This result is then used as initial condition for
the dynamical propagation using the modified CR3BP model
described in section 2.3.

4. DYNAMICS AFTER TOUCH DOWN

An important part of MASCOT-2 landing design is to assess
and simulate the dynamics of the lander once it gets in contact
with the asteroid’s soil. The interaction with Didymoon’s sur-
face is a crucial point to establish whether MASCOT-2 will



escape or not after bouncing. More in detail, the most im-
portant point is to assess the quantity of energy dissipated at
touch down. This effect can be summarized into a single pa-
rameter, called restitution coefficient, defined as the ratio be-
tween velocity after (v+TD) and before (v−TD) touch down

η =
v+TD

v−TD
(13)

The restitution coefficient ranges from 0 (fully inelastic colli-
sion) to 1 (fully elastic collision) and it represents a measure
of the energy dissipated at contact. As for the case of study,
two different effects are considered as dissipative terms: part
of the energy at touch down will be absorbed by the struc-
ture of MASCOT-2 (ηstruct), part of it will be absorbed by the
asteroid’s soil (ηsoil):

η = ηstruct · ηstruct (14)

The restitution coefficient allows to evaluate the amount
of energy dissipated by the impact, which essentially turns
into a decrease in the norm of the velocity vector after bounc-
ing. In addition, uncertainties on the local soil inclination are
also included, to stochastically model the irregularities of the
surface, leading into a non-trivial definition of the direction of
the velocity vector after bouncing.

5. MASCOT-2 LANDING RESULTS

As motivated in section 3, baseline design strategy considers
the release of MASCOT-2 on a stable manifold associated to
L2, and a transition at L2 to the unstable manifold branch to
reach Didymoon’s surface. More in detail, suitable solutions
are selected, with considering different release altitude. The
robustness of the ballistic landing solution is validated against
release and touch down uncertainties, to guarantee the success
of the landing strategy. More in detail, the effects of release
uncertainty in terms of position and velocity have been inves-
tigated. The analysis shows that a important role is played by
uncertainty in velocity, which must not be greater than few
cm/s, while uncertainty in position can be accepted up to few
tens of meters.

Figure 3 shows an example of dispersed release condi-
tions. For mission design purpose, it is important to study
the outcome of the dispersion analysis in terms of successful
landing probability.

Table 1 shows the percentage of escaped trajectories after
release dispersion. The results refer to a Monte Carlo sim-
ulation with 200000 release events simulated. As expected,
success rate increases as the release altitude decreases.

After assessing the successful rate of the release strategy,
it is important to study the outcome of the successful landing
in terms of final landing point dispersion. Table 2 reports the
latitude and longitude bands related to the resting point of
MASCOT-2 on Didymoon, for different release altitude cases.

Fig. 3. Ballistic landing trajectory after release dispersion

Table 1. Escape probability from Didymoon

Release Escaped trajectories [%]
altitude [m] After release After touch down TOT

100 1.14 0.00 1.14
150 1.26 0.00 1.26
200 3.18 0.01 3.19
250 5.79 0.04 5.83
300 6.03 0.32 6.35

The lander’s time of flight (Tof) from release up to rest on
Didymoon is also reported. Uncertainty range is included and
specified according to a Gaussian 3-σ distribution.

Table 2. Landing dispersion on Didymoon’s surface at rest:
latitude/longitude bands and time of flight between release
and rest

Release Dispersion at rest [µ± 3σ]
altitude [m] Lat [deg] Long [deg] Tof [h]

100 0.2 ± 32.5 23.3 ± 87.9 1.81 ± 0.95
150 0.0 ± 31.5 20.1 ± 66.7 2.19 ± 1.06
200 0.1 ± 32.9 19.7 ± 60.5 2.50 ± 1.21
250 -0.1 ± 36.6 20.5 ± 64.8 2.77 ± 1.41
300 0.1 ± 44.3 19.5 ± 86.0 2.95 ± 1.35

With reference to the case of 200m release altitude in Ta-
ble 2, Figures 4, 5, 6, 7 shows the landing dispersion on the
surface of Didymoon when the lander is at rest. More in de-
tail, the latitude-longitude map is shown in Figure 4, while the
three-dimensional view of all landing points on Didymoon’s
surface is shown in Figure 5. Latitude and longitude distribu-
tions are displayed, respectively, in Figure 6 and 7.

It must be highlighted that the dynamical behavior of the
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Fig. 4. Landing dispersion at rest for the case of 200 m alti-
tude release: latitude-longitude map

Fig. 5. Landing dispersion at rest for the case of 200 m alti-
tude release: three-dimensional view of Didymoon

lander after touch down is heavily dependent on the choice
of the restitution coefficient η, defined in section 4. Within
the assumptions currently applied at the present stage of
MASCOT-2 release design process, the results shows that the
landing region can be estimated. Although the uncertainty
latitude-longitude region is quite high (on the order of tens
of degrees), important information can be derived: it can be
stated that the lander will come to a rest in the hemisphere of
Didymoon opposite to Didymain.

6. CONCLUSION

Results show that the extremely low gravity environment does
not guarantee the lander to stay on the surface after touch
down, but MASCOT-2 will most likely bounce until reaching
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Fig. 6. Landing dispersion at rest for the case of 200 m alti-
tude release: latitude distribution of points
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Fig. 7. Landing dispersion at rest for the case of 200 m alti-
tude release: longitude distribution of points

a stable position of Didymoon. Successful landing probabil-
ity is assessed for the case of study and landing dispersion is
evaluated. Compared to classical Keplerian solutions, three-
body dynamics are found to be effective to lower the risk of
rebounding on the surface of the secondary, and to increase
the safety of the overall release maneuver to be performed by
AIM.

As mentioned, the results and analysis here presented are
part of the on-going AIM mission design process. Results
might change during the AIM design due to updated require-
ments or updated reference model available on Didymos sys-
tem.
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