
RAPID DEPLOYMENT OF DESIGN ENVIRONMENT FOR EUCLID AOCS DESIGN

Francesco Cacciatore (1), Raúl Sánchez (1), Alfredo Agenjo (1), Nicolás Puente (1), Carlos Ardura (1),

Luis Olier (1), Víctor Gómez (1), Massimiliano Saponara (2), Gonzalo Saavedra (3)

(1) SENER, (2) Thales-Alenia Space Italy, (3) ESA-ESTEC

ABSTRACT

Euclid is a cosmology mission dedicated to study the

geometry and the nature of the Dark Universe with

unprecedented accuracy. The Euclid S/C is procured by ESA

and supplied by TAS-I; SENER is the prime contractor of the

AOCS sub-system, for which the work is executed in

partnership with ADS-NL. In this frame, SENER has

developed a reference simulation tool (the Euclid Design

Simulator, EDS) which allowed a fast deployment of

environment for completing AOCS SRR in 1 month and

AOCS PDR in 7 additional months. The EDS allows from

quick design-and-run iterations to complete Monte Carlo

execution, and is the reference platform on which the AOCS

algorithms are implemented and evolved up to auto-coding.

The EDS is also the reference tool used to support the units’

models development and specification, making use of

suppliers’ information. The EDS will be evolved and

maintained through the whole project life cycle.

Index Terms— EUCLID, AOCS, Design Environment,

Simulator

1. INTRODUCTION

Euclid is a cosmology mission dedicated to study the

geometry and the nature of the Dark Universe with

unprecedented accuracy. Euclid will observe a 15000 deg2

wide area of the sky from the Lagrange point L2 of the Sun-

Earth system. The scientific goals of the mission result in

very demanding performances for the AOCS subsystem; as

an example, the observations’ Relative Pointing Error shall

be kept within 75 mas over a time scale of 700 sec. Amongst

other responsibilities, SENER is responsible for the design,

implementation and verification of GNC/AOCS algorithms.

In the frame of the activities for the Phase B2 of the study, a

set of tools and methodologies were developed and employed

for the design tasks undertaken. The core of the design effort

resided in the preparation and set-up of the Euclid Design

Simulator (EDS). Such simulator is based on the internal tool

SENERIC, whose model library was used as core or starting

point for the DKE, actuators and sensors models required for

Euclid. Along with the units and dynamics simulation, a

simulation management architecture was developed. The

main user for the EDS is the AOCS engineer, focusing on

design tasks. As a consequence, the EDS simulation

management infrastructure was developed taking into

account the following usage guidelines: fast data preparation

and processing, ability of storing and retrieving simulated

cases, ability of running different models with the same

source data set, ability of running Monte Carlo simulations,

all without requiring lengthy and complex case set-up. The

product of such effort is a simulator which allows launching

test cases from MATLAB Environment initialization

(leveraging on native types for data definition), as well as

flexibly generating and retrieving XML databases equivalent

to the MATLAB native data types. The EDS currently makes

use of Simulink libraries and model referencing, and further

efforts are envisaged towards the auto-coding of the

AOCS/GNC algorithms being designed through the EDS. It

is being used for developing models and specifications

aiming at an ideally seamless integration of the AOCS

algorithms within the formal verification environment, in first

step via Functional Engineering Simulator (FES), and later

for the Real Time Simulator (RTS) production to be applied

in the AOCS SCOE. EDS is applied during the whole process

as the flexible reference design tool.

2. THE EDS AND THE AOCS DEVELOPMENT

In the frame of the EUCLID AOCS development, two main

Simulation environments are being employed: the Euclid

Design Simulator (EDS), and the Engineering Simulation

Environment (ESE).

The ESE falls under responsibility of Elecnor-Deimos,

and is a FES according to the standard classification of

simulation tools recommended by ESA. The ESE is one of

the test environments foreseen to support the overall Euclid

AOCS verification and validation process. The ESE

infrastructure purpose is to perform the formal verification of

the AOCS requirements by analysis with respect to the

Technical Specification (TS), to execute the validation of the

control units models, and support the verification of the

AOCS requirements by test.

The EDS, in turn, is a Design tool, meant to be employed

by SENER from the beginning of the activities and

maintained and used over the whole project execution. The

aim of the EDS is to allow for the flexibility required in the

design process, which is opposed to the more rigid

environment needed and expected for the V&V phase. The

EDS is being employed for the design iterations, and is the

framework in which the AOCS modes, their function,

interfaces and associated databases are being defined.

AOCS sensors and actuators models are developed with

an iterative process starting from the existing models in the

EDS, and evolved through information provided by the units’

suppliers, with previous evaluation and specification carried

out using the EDS.

3. SENERIC

SENER developed a suite of high fidelity tools for the design

analysis and validation of an AOCS, organized in a

framework called SENERIC. This framework was initially

funded by the Spanish Ministry of Technology and was later

turned into an internally funded R&D project for its

continuation.

Currently, the emphasis has been put on the development

of an extensive library of simulation models within the

MATLAB/Simulink environment. These models range from

dynamics and environmental models to AOCS hardware

models to complete closed loop simulators. Visualization,

analysis, and post-processing tools are also included.

SENERIC is in continuous development since all tools and

models that are developed in individual projects are being

added to it for further reuse.

The suite contains models and libraries for:

 AOCS Equipment: sensors and actuators

 AOCS/GNC Functions: for rapid prototyping,

analysis and design.

 Environment: force-torque perturbations,

ephemerides, time references

 Mathematical operations & transformations

 S/C Dynamics and kinematics

SENERIC was employed in the design of the Planck [1]

IXV AOCS [2], in PROBA-3 [3] and [4], and in the OPTOS

spacecraft for the design and automatic code generation of the

Attitude Control System, thus successfully proving its

readiness level.

In the frame of EUCLID, SENERIC models have been

used as core and starting point for the development of the

EDS dynamics, actuators and sensors.

In addition, the SENERIC mathematical library was taken

as the basis from which the EUCLID-AOCS mathematical

library was created, with the final goal of being autocoded

into flight software.

4. DYNAMICS, SENSORS AND ACTUATORS

MODELS

The core of the EDS is composed by the simulation models

for dynamics, sensors and actuators.

The dynamics is based on a joint integration of the S/C and

reaction wheels, sloshing, and telescope Filter Wheel

Assembly (FWA/GWA) dynamics equations.

In this section a brief description of the main models

implementations is provided. The EDS Simulink core is show

in Figure 2.The S/C equations of motion consist of a rigid

body with a set of AOCS reaction wheels and the FWA/GWA

wheel. The following equation represents the dynamics that

are implemented in the numerical model.

[
𝐼𝑡𝑜𝑡 𝐼𝑅𝑊𝑈𝑅𝑊

𝐼𝑅𝑊𝑈𝑅𝑊
𝑇 𝐼𝑅𝑊𝐼𝑛×𝑛

] (
�̇̅�𝑆𝐶

�̇̅�𝑅𝑊

) =

(
−�̅�𝑆𝐶 × (𝐼𝑡𝑜𝑡�̅�𝑆𝐶 + 𝐼𝑅𝑊𝑈𝑅𝑊�̅�𝑅𝑊 + �̅�𝐹𝑊𝐴𝐼𝐹𝑊𝐴𝜔𝐹𝑊𝐴)

−�̅�𝑓(�̅�𝑅𝑊)
) +

(
�̅�𝑒𝑥𝑡

�̅�𝑅𝑊

) + (
−�̅�𝐹𝑊𝐴𝐼𝐹𝑊𝐴�̇�𝐹𝑊𝐴

0̅
)

Eq. 1: Dynamics equation

The FWA/GWA is modelled by explicitly imposing a

kinematic motion by directly injecting the angular rate and

acceleration profiles. Naturally, they are not independent and

the rate is the integral of the acceleration. This approach

ensures both a correct resulting torque profile and

conservation of angular momentum of the closed system.

The main point concerning the implementation of the MPS

model was the simulation of the prescribed error

characteristics, given in terms of noise PSD. The required

MPS noise PSD profile has been realized by opportune

filtering of a zero-mean band-limited white noise.

Specifically, a discrete time realization (based on Tustin

transformation) of a 2-poles filter was employed. An example

realization of the MPS noise is provided in the time-series

plotted in Figure 1.

Figure 1: MPS noise time-series realization

Figure 2: EDS Simulink Core

As for the MPS, a detailed modelling of the Gyroscope

noise characteristics was carried out by opportune filtering of

white noise sources. The implementation takes into account

the following noise contributions: Angle Random Walk, Bias

Instability (Flicker Noise), Rate Random Walk. Each of these

noise elements has been tuned to match the Allan variance

shape provided for the gyro unit.

Accelerometers were based on a similar approach to the

one employed for gyroscopes; linear accelerations derived by

the placement of the sensor and the S/C rotational dynamics

were included in the model.

The RCS model includes the following key elements:

integration & sampling, thrust time profile, noise and plume

impingement. To correctly simulate the effect of a RCS pulse

independently of the sample time set into the EDS, the

thruster force is scaled over an AOCS cycle in order to obtain

an analogue linear impulse to the one obtained with the

nominal thrust and the corresponding pulse duration (lower

than the AOCS sample time). Thrust rise and tail profiles are

modelled, and a uniform random distribution on the thrust

magnitude is added. The thrust alignment w.r.t. the thruster’s

axis is modelled with a uniform random distribution; the

thrust angle misalignment remains constant within a

simulation while the circumferential angle around the thrust

axis is uniformly distributed. This is generated between

different RCS pulses.

Sun sensors were simulated taking into account deviations

from the theoretical cosine curve for the output current with

a polynomial representation. Along with typical sensor noise,

the Earth albedo effect is included relying on an offline

computation taking into account Earth illumination and the

actual sensor field of view.

The Reaction Wheels Assembly (RWA) dynamics model

complements the attitude dynamics model. This RWA

dynamics computes the friction per wheel using the static

friction as well as the viscous and Coulomb frictions. The

RWA torque model includes a dead-time during torque sign

reversal. During this time, the RWA does not command

torque. The dynamical response represented by a first order

transfer function is included in the simulations. The RWA is

thus represented as a sort of distributed model, with separate

integration of the equations of motion (along with the S/C)

and dynamic characteristics simulation.

The Fine Guidance Sensor (FGS) simulation was carried

out making use of an in-house custom built model,

implementing the customer-specified sensor characteristics.

The sensor tracking logic (measurement lock, acquisition

delays, data outages, measurement delays) were modelled,

along with the absolute/relative tracking performances as

function of the S/C angular velocity. A custom wrapping

layer was developed to allow the EDS to be able to easily

swap such in-house model for a customer-provided FGS

model. The customer-provided data and model was incrusted

in the EDS architecture with ideally none (or at least

minimum) modifications.

Star trackers are modelled taking into account their

integration and processing delay, the measurement bias and a

velocity-dependent noise. Spatial effects due to FOV and

detector characteristics (see [5] and [6]) are modelled

respectively as a first and second transfer functions; such

transfer functions are dynamically integrated, as they have

non-constant gains that are function of the S/C angular

velocity and rotation axis direction. Such implementation

allows transforming the spatial errors into temporal noises

with the motion of the S/C, and to consider them as biases

when inertial pointing is achieved.

The AOCS is executed as part of the onboard software,

running on the CDMU (Central Data Management Unit). In

order to represent correctly the timely data flow due to the

finite AOCS execution time, specific CDMU pre-GNC and

post-GNC functional subsystems were included in the model.

5. EDS WORKFLOW AND INFRASTRUCTURE

One of the main issues observed in the EUCLID AOCS

design process, common to all similar projects, is the contrast

between two of the main needs of the design team: on one

hand the design of AOCS algorithms and functions, and on

the other hand the testing and performance assessment of

such algorithms.

The design activity requires an environment whose main

characteristic is the flexibility. The design engineer must be

able to execute a high number of subsequent loops involving

design change, simulation execution, and output post-

processing and results inspection. This workflow often

requires interacting with the simulator sensors, actuators and

dynamic models, and it’s not limited to the on-board

algorithms domain.

The testing and performance assessment, requires a more

constraining workflow, managing large data sets, and with

the ability of executing and storing in an efficient and orderly

way different set of simulation cases, including Monte Carlo

runs.

Both the rapid design loop and the organized case runs

execution involve interacting with the Simulator datasets and

models, with the AOCS algorithms and their associated

database, and with the AOCS interfaces and datatypes

definition. All these elements are part of the project

development, and are included in the design evolution.

The above considerations have been the main driver for

the shaping of the EDS infrastructure and use.

The EDS is composed of the following high level

components: a Simulink architecture model, a MATLAB

infrastructure to manage the simulations execution and

associated data, and a set of utilities which aim at improving

the efficiency of the workflow, comprising of all the ancillary

operations needed for AOCS design and test. The EDS

architecture, even though tailored in this case for its use in the

EUCLID AOCS design, is built in such a way to allow reuse

for other purposes minimizing the refurbishment effort.

5.1. Simulations execution

Three execution modes are allowed in the simulator: Design

run, Systematic run, and Monte Carlo.

The Design mode allows the design engineer to rapidly

run simulation cases and iterate on the algorithms design and

simulator parameters, minimizing the set-up effort. The aim

here was to configure the simulation with a single MATLAB

command. Source data can be loaded either from default data

sets or from specific input cases (see Section 5.2 for data

management details). No complex post-processing is

foreseen for this execution mode.

The Systematic run mode exploits the same data

management system as the Design mode, but adds a wrapper

for automatic execution of predefined cases in terms of

Simulator and AOCS data sets.

The Monte Carlo mode exploits the systematic run mode,

adding an additional engine for data perturbation and multiple

shots management. The Monte Carlo engine allows a flexible

definition of the variables to be perturbed, and of what

distribution shall be employed; customized perturbation

functions can be associated to any given variable with a plug-

and-play philosophy that requires no modification by the user

of the Monte Carlo engine, thanks to a standard function

header definition.

Simulation post-processing is based on custom user-

defined MATLAB functions, tailored to fit the needs of the

simulations executed. Such custom functions are anyway

expected to locate, manipulate and store data according to the

common standard architecture employed in the EDS.

Figure 3: EDS functional architecture

The elements composing the EDS functional architecture

are presented in Figure 3. It is important to highlight that all

of the AOCS components (software algorithms, interfaces,

on-board database) will be autocoded into the actual flight

software. As a consequence, all AOCS parts are well

separated from the Simulator architecture, even though

functionally embedded into it.

5.2. Simulation data management

Data management is based on the standard concepts of source

data base, pre-processing, simulation database.

The source data base, as expected, contains all the data that

the user can directly manipulate to set-up a simulation case.

The pre-processing step transforms such user-friendly

parameters to the often less intuitive data needed by the

simulator core. As a simple example, misalignments error can

be defined as conic errors around a given direction, and are

then pre-processed in reference frame transformations for

their implementation in the simulation.

In line with the duality previously discussed between the

needs for design and performance assessment, data

management relies on two source data-base initialization

modes: m-files, and xml databases.

The use of m-files is retained to allow quick set-up and

debug of the simulator, while xml databases allow setting up

complex simulation cases in a more structured and controlled

fashion. Xml databases and m-files retain full compatibility:

xml datasets can be generated directly from m-files, making

use of specific utility functions included in the EDS pack,

which aim at avoiding lengthy set-up of complex xml files

from scratch. This functionality was thought specifically for

the design phase, where both the AOCS/GNC and the EDS

are under continuous development, and the data structures are

not consolidated enough to result in frozen xml files. In such

conditions the development typically advances making use of

MATLAB native files, and the changes can be quickly

reverted to new xml templates.

5.3. AOCS-AUTO Interfaces

Interfaces are a key element of the AOCS, and their definition

plays a relevant role in the design and development process.

The AOCS SW modules will have logic interfaces with

the sensor and actuators through the AASW-MAN (manually

coded AOCS software), and also with the AASW-MAN

directly. From a software point of view all the interfaces will

be with the AASW-MAN, so the AASW-MAN will call a

function that it is part of AASW-AUTO (auto coded AOCS

software) through this function will be transferred the

IN/OUT parameters. The transferred information will

consists of AOCS Sensors (input parameters), AOCS

Actuators (output parameters), input data failure detection

reporting, unit configurations, on-board database parameters,

GNC states, internal parameters to be provided as house-

keeping telemetry, failures detected during AOCS-AUTO

(Autocoded AOCS code) software execution.

A strong data typing approach is employed in the

definition of the AOCS modes Simulink models. Such

approach relies on the following elements:

 Input/Output AOCS-AUTO data are organized into

Simulink Buses, analogous to C data structures

 The AOCS interfaces are defined in terms of such

data buses and their elements, with their data types

and dimensions

 The use of Simulink require existing Bus Object for

the definition of the models input and output ports.

 The Bus Objects are autocoded into C-code type

definitions, which constitute part of the actual flight

software

 The interfaces must be iterated and documented,

and will be needed by the AOCS-MAN SW and by

the ESE to embed the AOCS-AUTO code.

Taking into account all the above, the EDS was provided

with a utility that allows generating the interfaces making use

of a dedicated Simulink model. The workflow employed is

the following:

 The design engineer defines interface signals, data

types and sizes in the mentioned dedicated

Simulink model

 A set of custom utilities generates and stores the

required Simulink Bus Objects deriving from the

interfaces definition

 The blocks building the interfaces signals are

stored into libraries, available for the EDS.

 At EDS level, the sensors and actuators data, unit

configurations, simulated commands are employed

by the interfaces library blocks to build the signals

sent to the AOCS modes models during simulations

 The defined interfaces are reported in automatically

generated Excel document

The aim of such infrastructure and workflow is to rigidly

link the actual interfaces specified for the AOCS modes, the

simulated signals sent to the AOCS at simulation level, the

C-code objects ultimately generated, and the associated

documentation. Having all elements of the chain is a feature

thought useful for the minimization of errors, and for limiting

the effort associated with the interfaces definition iterations.

6. AOCS SOFTWARE DEVELOPMENT

The AOCS is being developed according to the Model-Based

Design (MBD) philosophy. The use of this methodology

introduces certain differences from a traditional (manual

code) software development approach.

The MBD is a model centric approach where except for

the initial set of requirements the artefacts that represent the

software, interfaces, architecture and tests will be mainly

models. This design approach relies for the EUCLID AOCS

on the MathWorks framework, MATLAB/Simulink

environment and the code generation toolboxes.

In this frame, the system model is at the centre of the

development process, and the model evolves from

requirements development, through design, implementation,

and testing. The model is an executable specification that is

continually refined throughout the development process.

During model development, simulation show whether the

model works correctly.

The AOCS algorithms will be part of the model to be

included in the AASW (AOCS Application Software); such

algorithm models will eventually be developed as generated

code on the embedded processor running together with the

AASW -MAN and CASW (CDMU Application Software).

The code produced by the models will be verified for

confirmation of the results obtained at the model level.

MATLAB/Simulink is being used during most of the

software lifecycle in order to have a unique and integrated

environment in all the major aspects of the software

development. Simulink is able to link models with

requirements (with the SL Verification & Validation Tool),

and the Coder tools generate C code with comments and tags

that trace with the model and the requirements.

The development activities and in particular the

procedure, rules and guidelines developed in the frame of the

EUCLID AOCS project are focused on the proper use of

MATLAB/Simulink and their software development tools.

6.1. Life Cycle Model Overview

As the rest of the AASW, the Model-Based design

development and validation plan follows the evolutionary

model. This is an iterative approach where progressive

versions of the model/software are foreseen. For each version

an iteration occurs and a model validation is foreseen.

As for the AASW-MAN, the autocoded software will

follow the same versioning approach. Consequently, within

this evolutionary development process the model evolves as

a whole from initial versions where only the interfaces

(blocks “frames”) are set to detailed models where initial

architectural blocks and their functionality are further

elaborated and divided into small parts. For each

development phase the complete chain can be exercised, so

each model version will contribute to the RB and

corresponded code version could be generated and tested.

6.2. Model Design and Implementation

The model will be developed using Simulink® block

diagrams, and Embedded MATLAB™ code.

During the design process the model will evolve based on

simulation loops performed in the EDS environment. During

these simulations the model will be compiled and checked to

verify it is well specified and complete. The simulation

results obtained will be used to refine the model. Simulations

performed during this phase on the EDS are equivalent to test

cases, which will be the start point to develop the validation

tests.

For each mode, a Simulink model will be created so its

design will start by creating a root class representing the

overall mode, and then the model is decomposed into smaller

pieces according to the defined architecture and following the

autocoding methodology.

This decomposition should be interpreted as a high-level

identification of functionalities and assignment to C functions

during the autocoding process. One of the steps that is

considered in this part is the identification and analysis of the

Simulink subsystems that constitute the model, and the

corresponding mapping to the C-code function.

During this phase the model has to be pre-validated and

the test cases are generated. Simulink tools will be used to

assist the test cases generation based on the coverage criteria.

The Model Coverage Tool will be used to determine the level

of coverage achieved from the test cases used during

simulation.

The unit and integration tests will be detailed in the

respective test plans. They will follow a bottom-up approach

starting from the definition of “unit” blocks, designing the

unit test and then performing the unit integration. According

to the defined architecture the control designers and the

software team will determine how the model is partitioned

into lower level units as a starting point of the unit and

integration test definition.

The unit and integration test will be automatically

executed in the MATLAB/Simulink environment. A subset

of these tests will be used in the next stages to perform

regression tests with next model versions.

7. 10. REFERENCES

[1] Llorente-Martínez, J. S., Zorita, D., Agenjo, A., Cazorla, C.,

O'Dwyer, A., Del Cura, J. M., “Planck Acms: Autonomous and

Precise Control for Slowly Spinning Satellite”, 6th International

ESA Conference on Guidance, Navigation and Control Systems

2006, CDROM. id.40.1., Loutraki, Greece, October 2005.

[2] D. Gherardi, V. Marco, R. Sanchez, A. Caramagno, L. F. Peñin,

M. Kerr, J. A. Béjar, E. Zaccagnino, J-P. Preaud, “IXV GNC

Subsystem Design And Performances”, 8th International ESA

Conference on GNC Systems, Karlovy Vary, Czech Republic, June

2011

[3] J.S. Llorente, A. Agenjo, C. Carrascosa, C. de Negueruela, A.

Mestreau-Garreau, A. Cropp, A. Santovincenzo, “PROBA-3:

Precise formation flying demonstration mission”, Acta

Astronautica, Volume 82, Issue 1, Pages 38–46, 6th International

Workshop on Satellite Constellation and Formation Flying, January

2013

[4] L. Tarabini Castellani, A. Paoletti, A. Agenjo, J. Peyrard, A.

Cropp, R. Atori, “PROBA-3 Precise Formation Flying System:

Design & Development Tools and Methods for FFS Implementation

in a Technology Demonstration Mission.”, ICATT4, ESAC (Spain).

05/2010

[5] ECSS Secretariat, “Stars sensors terminology and performance

specification”, ECSS, ESA-ESTEC Requirements & Standards

Division ECSS‐E‐ST‐60‐20C Rev. 1, 15/11/2008

[6] J. Eggert et al, “Pointing Error Engineering Tool PEET Software

User Manual”, Astos Solutions GmbH, ASTOS-PEET-SUM-001,

26/07/2013

