

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 640277

IRENA

"International Re-Entry demoNstrator Action"

A Coordination and Support Action funded by the European Union's Horizon 2020 research and innovation programme in preparation for an international technology demonstrator mission.

> Presented at: 6th International Conference on Astrodynamics Tools and Techniques (ICATT) ESOC, Darmstadt, Germany, 14-17 March 2016

What is IRENA ?

- R&D project funded by the EC's Horizon 2020 programme (Coordination and Support Action)
- Selected out of 2014 Space Call COMPET-09-2014: "Technology "demonstrator projects" for exploration"
- Objectives:
 - define 2 entry/re-entry demonstrator projects (flight or ground) aimed at international cooperation (esp. USA and Japan)
 - Create the ground for their actual implementation (funding, governance, international partnership)
- Schedule: January 2015 April 2016
- **Budget**: 800 k€

ESA ARD

FP7 Rastas Spear

ESA IXV

Who is involved ?

• Space agencies

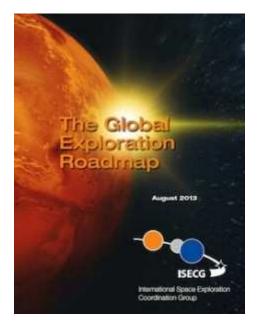
observer

observer

• Large space integrators

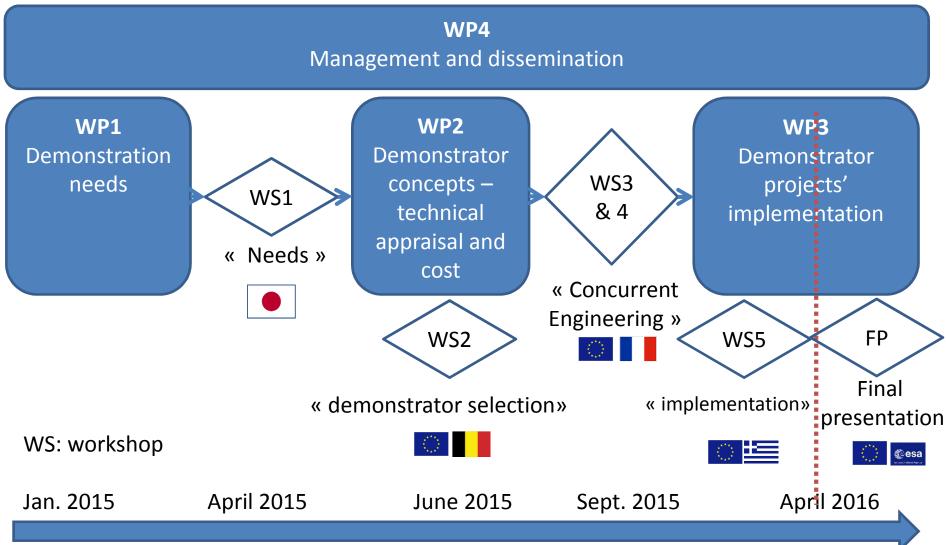
coordinator

• Research institute



Why?

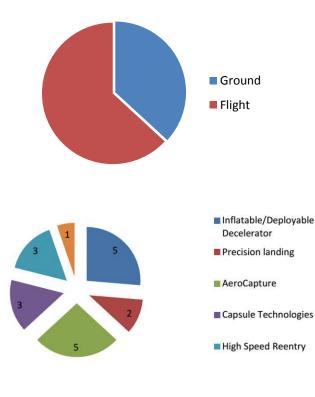
- International Space Exploration Coordination Group (ISECG)'s vision and roadmap (GER)
 - need for entry, descent, and landing technologies
 - test and demonstrate
 - International cooperation is key
- EC also selected entry/re-entry as a key technology
- Interest to create and promote new initiatives in Europe



International Space Exploration Coordination Group

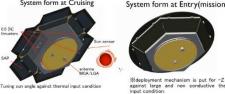
How is the work done?

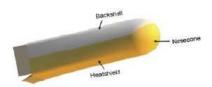
Where we stand

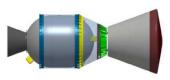

- Demonstration needs defined
- Demonstrator candidates selected
- Demonstrator preliminary design completed (4 demonstrators)
- 2 final demonstrators for the implementation selected
- Implementation plan defined
- 4 workshops completed, including a CDF session
- Pending final presentation and review

Call for ideas for demonstrator candidates

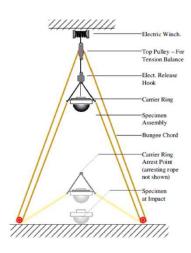
- 19 proposals received:
 - 7 ground, 12 flight
 - 2 proposals merged, one proposal integrated
- Major Topics:
 - 1. Aerocapture / Aerodynamic decelerator (8)
 - 2. GNC partly combined with aerocapture (6)
 - 3. High speed entry/TPS (4)
- Programmatic and technical selection criteria
- 4 proposals selected + 2 back-up


Flight Demonstrators


- Aerocapture Vehicle to Mars (JAXA)
- Aerocapture Mars Demonstrator (CNES)
- HEARME : Heatshield for Earth Aerocapture and Re-Entry(Ext.)


merged

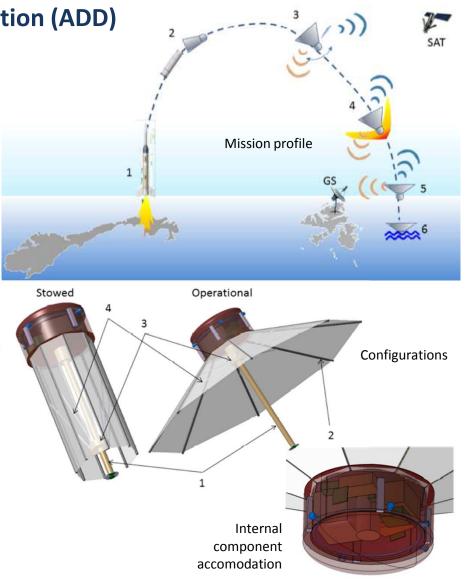
- Aerocapture Earth Demonstrator (CNES)
- Skip Re-entry demonstrator (ADS)
- Multiple Re-entry System Demonstration platform (JAXA)
- High speed re-entry demonstrator (TAS-I)
- High Speed demonstrator for radiative heating measurement (ADS)
- Ablative TPS recession sensor (Demokritos) (integrated in selected proposals)
 - Inflatable heat shield & decelerator demonstrator (TAS-I) backup
 - Inflatable Decelerator for EXPERT-like vehicle (TAS-I)
 - Aerodynamic Decelerator Demonstration (DLR)



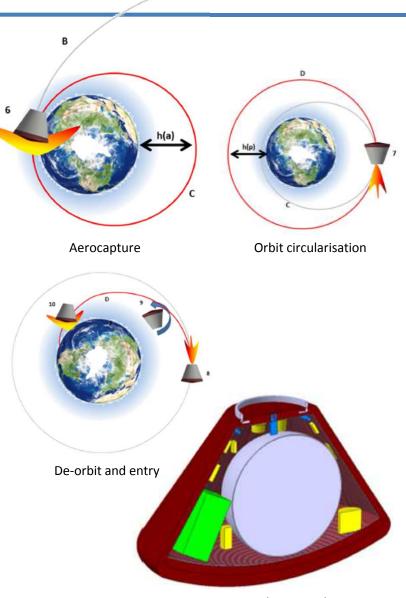
Ground Demonstrators

- Mars Precision Landing
 - preparatory demonstrators (TAS-I)
- Prototype of vision based precision landing GNC (CNES)

- Ground Test Facility for crushable capsule (ADS)
- Adaptive and Versatile Front shield Test bed "Test as you Fly" (ADS)
- Inflatable Ground demonstrator for upper stage safe re-entry (ADS)
- Winged Re-entry vehicle approach and landing demonstrator (TAS-I)
- Inflatable/deployable rotary decelerator for re-entry capsule (ADS)

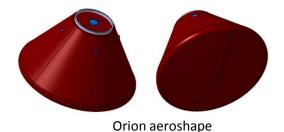


Aerodynamic Decelerator Demonstration (ADD)

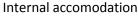

- **Objective**: flight demonstration of moveable and foldable decelerator systems
- Application: aerocapture and g-load reduction
- Main features:
 - Deployable decelerator screen with fabric TPS
 - Test of specific GNC technics using drag modulation
 - Active attitude control before EIP
 - Variable deployment angle of the decelerator as an active aerodynamic actuator
 - Launched by Sounding rocket
 - Recovery of the experiment data and optionally also the vehicle
 - Mass approx 150kg, length 1,2m
 - EIP velocity 2500m/s at -35deg FPA

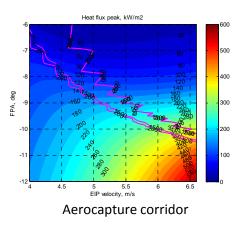
Earth Aerocapture Demonstrator

- **Objective**: Demonstration of an autonomously controlled earth atmospheric pass allowing to decrease apogee altitude and possibly changing inclination of the orbit as Piggy back .
- **Application**: Future missions to planets with atmosphere
- Main features:
 - Test specific dual pulse TPS
 - Test aerocapture GNC technics and algorithms in a realistic environment.
 - Familiar aeroshape (Orion)
 - Autonomous navigation and guidance, but ground commanding for improved accuracy
 - Onboard orbital and RCS propulsion
 - Recovery optional, experiment data transmitted
 - 10 h mission
 - Mass approx 260kg, D=1.02m

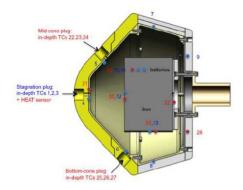


Internal accomodation




Mars Aerocapture Demonstrator

- **Objective**: Demonstration of aerocapture in Mars atmosphere
 - \rightarrow Piggy back on a future Mars mission (MPL etc.)
- Application: Future missions to Mars
- Main features:
 - First aerocapture on Mars in representative atmospheric conditions
 - Mission potential for both human and robotic on Mars and other inner and outer planets
 - Aerocapture is beneficial for high mass landings on the surface of Mars.
 - Lift modulation control for secure aerocapture
 - Sensors and instrumentation in order to acquire aerothermal environment close to thermal protection systems
 - Mass 74kg, Ø890mm



Generic capsule test bed

- **Objective:** Demonstration of scale 1:1 capsule TPS configurations testing in arc jet facility
 - \rightarrow Validated with flight test
- Application: TPS development and qualification
- Main features:
 - Different heat shield shapes and TPS designs tested
 - Comparison of experimental data to validate models and characterize disparities (Instrumentation to measure and gather information during the arc-jet testing and in-flight).
 - Elimination of flight test needs due to absence of geometrical scaling issue (Ø600mm)
 - Easy to replace heat shields with various materials, shapes from different manufacturers
 - Utilization of SCIROCCO Wind tunnel test facility as a baseline

SCIROCCO test chamber

SPRITE probe cross section and instrumentation

Pioneer aeroshape

More information on IRENA:

www.irena-project.eu

irena@irena-project.eu