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ABSTRACT

Mission designers addressing the computation of low-thrust
many-revolution transfers need versatile and reliable tools for
solving the problem with efficient computational times. This
paper proposes a Lyapunov feedback control method, Q-law
by Petropoulos[1, 2] with algorithm modifications to accom-
modate for the singularities in the original equations and to
include the most relevant perturbations, such as the J2 per-
turbation and the effect of coasting during eclipse periods.
The optimization of the control-law parameters via a multi-
objective evolutionary algorithm (NSGA-II) improves the re-
sults significantly and permits to easily compute the minimum
time transfer and a well-spread Pareto front, trading transfer
time versus propellant.

Index Terms— Q-law, low-thrust, orbit transfer, opti-
mization

1. INTRODUCTION

The recent development of low-thrust electric propulsion sys-
tems has brought new challenges in the field of trajectory de-
sign. Electric propulsion can offer important mass and launch
cost savings compared to chemical propulsion and can be-
come nowadays an enabling technology for many satellite
missions despite the longer times that are required for the
transfer.

The problem of computing many-revolution, low-thrust
orbit transfers has been addressed since several decades and
is still an interesting topic of research. The complexity of cal-
culations is higher than that of conventional chemical propul-
sion, as manoeuvres cannot be considered as instantaneous
changes in the velocity, but rather a continuous acceleration.
The ultimate goal of a low-thrust orbit transfer computation
algorithm is to find the optimal thrust direction at any instant
of time, as well as the thrust switching times that ensure an
optimal convergence to the target orbit. The optimization can
be addressed in the sense of the minimum-time transfer and
the minimum-propellant transfer, this latter allowing to study
the trade-off between transfer time and propellant.

A direct, Lyapunov feedback control method is proposed
for use during the initial stages of the mission design, at which

versatile and efficient computations are favoured over high-
precision. The Q-law method, as proposed and refined by
Petropoulos, provides means of deriving the optimal thrusting
angles and the coast phases for an arbitrary transfer between
two orbits around a central body. We propose a few modifica-
tions to the Q-law algorithms such as formulating the problem
in equinoctial elements to avoid the singularities occurring for
circular or zero-inclination orbits, including an optimization
layer based on Genetic Algorithms to ensure finding the best,
near-optimal transfers, and incorporating the effect of the J2

perturbation and the constraint of coasting during eclipses to
have a more realistic model of the dynamics.

Overall the proposed method has proven efficient and ro-
bust to generate an optimal, well-spread Pareto-front of the
transfer time versus the required propellant mass for an orbit
transfer between two arbitrary orbits.

2. EQUINOCTIAL Q-LAW

We solve the orbit transfer problem using a Lyapunov feed-
back control method developed by Petropoulos[1][2] and
called the Q-law, which solves the orbit transfer in an inverse-
square gravity field where there is no constraint on the final
true anomaly.

The Q-law is based on a proximity quotient, Q, which
captures the interdependencies between the orbital elements
by means of scaling functions that quantify the proximity of
the osculating orbit to the target orbit. Essentially it is an
optimistic estimation of the time-to-go, and has units of time
squared. During the transfer at each instant the Q-law method
chooses the thrust angles that reduce the Q value the most
quickly. A coasting mechanism is also incorporated that is
based on variable effectivity of the thrust in reducing Q at
different true anomalies.

The classical Q-law formulation uses Keplerian orbital el-
ements. In our formulation we use the following equinoctial
orbital elements p, f, g, h, k, L as state variables:

p = a(1− e2), (1)
f = e cos(ω + Ω), (2)
g = e sin(ω + Ω), (3)



h = tan(i/2) cos(Ω), (4)
k = tan(i/2) sin(Ω), (5)
L = ω + Ω + θ. (6)

where a is the semi-major axis, e the eccentricity, i the in-
clination, Ω the right ascension of the ascending node, ω the
argument of perigee, θ the true anomaly, p the semi-latus rec-
tum and L the true longitude.

The advantage of using this formulation with respect to
the classical set is the lack of singularities in the differential
equations near circular and equatorial orbits, such as the geo-
stationary ring. Since it is a popular operational orbit, this is a
great advantage, as it stabilizes the numerical propagation of
the trajectory towards the end of the transfer.

The modified Lyapunov function, or Q function, is de-
fined as:

Q = (1+WpP )
∑

œ

SœWœ

(
œ− œt

œ̇xx

)2

, œ = a, f, g, h, k.

(7)
Using the semi-major axis as the first variable instead of

the semi-latus rectum proved to yield a better control when
using the equinoctial orbital elements to formulate the Q-law.
However, for the propagation of the orbit, the latter is used
(p), as the right hand side of the differential equation is less
expensive to evaluate.

In Eq. (7) œ are the current, while œT are the desired or-
bital elements, whereas œ̇xx are the maximum rate of change
of the corresponding variable over the thrust direction and
true anomaly on the osculating orbit. This law enables some
elements to be changed in order to make it easier to induce
greater changes in other elements later (i.e. increase semi-
major axis in order to change inclination with less total delta-
V expenditure).

The remaining terms are Wœ the scalar weighting factors
for each of the equinoctial orbital elements, Sœ scaling factor
where Sœ = 1 for œ = f, g, h, k and

Sa =

[
1 +

(
|a− at|
mat

)n]1/r

, (8)

which is introduced to prevent convergence to a = ∞ (since
for a =∞ all the œ̇xx tend as well to an infinity value). P is
a penalty function to restrict trajectories with too low perigee
passage and has the form

P = exp

[
k

(
1− rp

rpmin

)]
, (9)

where rp = p/(1+e) is the current periapsis radius and rpmin

is the lowest permitted periapsis radius, with k determining
the slope of the exponential barrier arising around the critical
region.

Experiments show that this formulation is applicable to

most transfers present in real life applications, and yields ac-
ceptable results. By varying the scalar weights and parame-
ters, different transfers can be realized with distinct charac-
teristics (e.g. ∆V , time of flight, eclipse durations, etc.). The
optimal trajectory for a certain goal can be computed by opti-
mizing these parameters.

2.1. Orbit Propagation

The equinoctial form of the Gauss equations is used to nu-
merically integrate the orbit. These formulas are also used
to determine the maximum rate of change of each equinoc-
tial element as required by the Q-law. The equations are not
disclosed here due to their complexity and length, but can
be found in previous publications of the algorithm[3]. The
Gauss’s equations can be expressed in simplified matrix form:

ȧ
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. (10)

where Fr, Ft and Fn are the perturbing accelerations in the
directions er, et and en (er||r, en||(r×ṙ), et||(en×er)),
thus in the radial, circumferential and angular momentum di-
rections, respectively.

From the Gauss equations the maximum rate of change of
the orbital elements can be calculated by substituting

Ft = F cosβ cosα, (11)
Fr = F cosβ sinα, (12)
Fn = F sinβ, (13)

and expressing the extrema of the resulting function with
respect to α, β and L, the true longitude. α and β are the
thrusting azimuth and declination angles respectively (in the
osculating orbital frame). α is measured in the orbit plane
from the circumferential direction and positive away from the
gravitational centre. β is measured out of the orbit plane and
positive along the angular momentum.

The classical Q-law supplies these values analytically,
however they are expensive to evaluate due to their complex-
ity and trigonometric expressions. In our formulation analyti-
cal expressions can be found for a, h, and k, but unfortunately
not for f and g in closed form. However a moderately good
approximation can be used for these values, as a numeri-
cal solution would be expensive computationally and would
also introduce unknown derivatives in the equinoctial Q-law
implementation to be accounted for. The maximum rate of
change of our Equinoctial Q-law variables are computed as



follows:

ȧxx = 2Fa

√
a

µ

√
1 +

√
f2 + g2

1−
√
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, (14)

ḟxx ≈ 2F

√
p

µ
, (15)

ġxx ≈ 2F

√
p

µ
, (16)

ḣxx =
1

2
F

√
p

µ

s2√
1− g2 + f

, (17)

k̇xx =
1

2
F

√
p

µ

s2√
1− f2 + g

. (18)

We note that these are simple algebraic equations that do
not involve trigonometric functions.

The time derivative of Q can be determined as

dQ

dt
=
∑

œ

∂Q

∂œ
œ̇, œ = a, f, g, h, k. (19)

The Q-law method is based on choosing the thrusting an-
gles α and β at each instant during the transfer such that Q̇ is
the most negative, therefore ensuring the most rapid decrease
of the “distance” Q to the target orbit. These angles can be
computed analytically, as Q̇ can be rewritten as

dQ

dt
= D1 cosβ cosα+D2 cosβ sinα+D3 sinβ, (20)

where D1, D2 and D3 are parameters obtained from the
derivatives present in Eq. (19) and can be calculated as

D1 =
∑

œ

∂Q

∂œ
∂œ̇
∂Ft

, (21)

D2 =
∑

œ

∂Q

∂œ
∂œ̇
∂Fr

, (22)

D3 =
∑

œ

∂Q

∂œ
∂œ̇
∂Fn

. (23)

To obtain the optimal thrusting angles Eq. (20) has to be
differentiated with respect to α and β and solved as a system
of equations for zero

∂Q̇

∂α
= −D1 cosβ sinα+D2 cosβ cosα (24)

∂Q̇

∂β
= −D1 sinβ cosα−D2 sinβ sinα+D3 cosβ. (25)

The solution of this problem is

α∗ = arctan(−D2,−D1), (26)

β∗ = arctan

(
−D3√
D2

1 +D2
2

)
, (27)

where the inverse tangent function in Eq. (26) is the 4-
quadrant version to yield a thrusting azimuth angle on
(−π, π), whereas in Eq. (27) the usual arctan can be used to
get a declination angle on (−π/2, π/2).

2.2. Thrust Effectivity Thresholds

The minimum time transfer problem can be solved with the
theory discussed so far, however, usually it is desirable to
calculate the trade-off between transfer time and propellant
consumption. This is best represented by a partial or full
Pareto front of transfer time versus propellant or Delta-V.

For this purpose, two quantities are introduced to mea-
sure the effectivity of thrust at a given point on the transfer.
This allows differencing between thrusting and coasting arcs.
Critical values of these coefficients can be predetermined to
cut thrust at certain areas of the orbit, increasing travel time
and reducing the used propellant mass.

To calculate the effectivity coefficients, first the maxi-
mum and minimum Q̇ has to be calculated with respect to the
thrusting angles and the orbital position.

Q̇min = min
L,α,β

Q̇, (28)

Q̇max = max
L

min
α,β

Q̇. (29)

It is important, that in both Eqs. (28) and (29) the minimiza-
tion and maximization are to be computed at the same time,
such that the extrema of Q̇ is to be determined over the 3 di-
mensional L,α, β space. The extrema of Q̇ over α and β can
be easily determined, as shown in reference[3].

min
α,β

Q̇ = −
√
D2

1 +D2
2 +D2

3, (30)

max
α,β

Q̇ = +
√
D2

1 +D2
2 +D2

3. (31)

However, the minimum/maximum on L is hard to find.
Numerical methods are used (Brent’s method and Golden sec-
tion search) to find the extrema on L = (0, 2π). This function
usually has two minima and maxima, thus some method has
to be added to find the global extrema.

The absolute and relative effectivity coefficients are de-
fined as

ηa =
Q̇

Q̇min

, (32)

ηr =
Q̇− Q̇max

Q̇min − Q̇max
. (33)

These values are computed at each integration step through-
out the transfer, and compared to predetermined cut-off val-
ues. Thrusting takes place in the optimal direction defined by
α and β if the calculated efficiencies are above the threshold.

Obtaining theDi values is taking the majority of the com-
putation time in any scenario, but especially in the minimum



propellant problem, where subsequent evaluation of Eqs. (28)
and (29) is needed for the iteration process to find Q̇min and
Q̇max. Hence, it is essential to calculate these coefficients
with the least number of CPU operations.

This requires the optimization of local operations (addi-
tion, multiplication, division) in such a way that no unneces-
sary calculations are carried out. Individual and compound
computation sequences are generated for D1, D2 and D3.
Since these expressions share a number of operations, and
they are not used individually in the algorithm, compound
optimization is advised.

Table 1 contains the operations cost of the original and
optimized calculations. Function evaluations correspond to
mostly trigonometric and exponential functions. Although
other methods are available to convert algebraic expressions
to C compatible code, it can be clearly seen that optimiza-
tion of the computation is highly favourable, as it greatly
reduces the number of operations leading to large savings of
computation time.

Table 1. Operation cost for different optimization levels
Optimization Add(+) Mul(*) Div(/) Func.
0 (None) 976 1930 564 522
1 (Individual) 164 630 65 58
2 (Compound) 69 270 25 21

2.3. Numerical Integration

The orbit is propagated numerically by integrating the Gauss
equations[3] with the Runge-Kutta-Fehlberg[4] (RKF78)
method.

Although RKF78 has built-in truncation error calcula-
tion and adaptive step size control, it is not used due to the
nature of the problem. We use a regularization method to
control the time step that based on experience performs well
in integrating elliptical orbits. It uses the following formula:

∆t = ∆L

√
r3

µ

√
w

1 + e
(34)

where ∆L is a predefined angular step for the transfer, typi-
cally between 5◦ − 20◦.

While the conventional regularized step size determina-
tion algorithm is simply omitting the last product

√
w/(1+e),

this modified expression seems to perform better in estimat-
ing the global integration error in transfers where circular and
elliptical intermediate orbits are both present.

2.4. Convergence

In some transfer cases the final convergence to the target orbit
can present some issues. Especially in planar (and circular)
problems, the spacecraft may arrive at the target orbit at a true

longitude where reducing the final discrepancy of a and e can
result in opposite optimal thrusting directions. As a conse-
quence, the transfer takes longer than needed, which yields a
suboptimal solution.

In addition, if the integration step and the thrust-to-mass
ratio are both high, overshoot can happen in one or more
orbital elements and an oscillatory behaviour begins, which
greatly increases the time to converge properly.

To decrease the possibility of these effects, the integration
step size is gradually reduced in the final phase of the transfer,
when the current orbit approaches the target orbit (Q-value
dependent). When the Q-value is approaching zero, the orbit
propagation stops. A small error remains in the orbital ele-
ments which is adjusted by a stricter convergence criterion.
The condition for stopping is

Q < Rc

√∑
œ

Wœ (35)

where Rc is a dimensionless quantity that controls the error
of the remaining distance from the target orbit, nominally set
to unity.

2.5. Perturbations and Constraints

The main purpose of the application of the Q-law for orbit
transfers is to carry out preliminary mission design and to pro-
vide good initial guesses for the evaluation of low-thrust orbit
transfers with high fidelity tools. However, certain effects still
have great contribution to the dynamics of the system, and can
not be neglected.

2.5.1. Zonal harmonics.

The major contributor of the non homogeneous gravity field
of celestial bodies is the J2 harmonic. For long duration trans-
fer around the main body (usually Earth), the secular J2 per-
turbation becomes significant and has to be included in the
Gauss’s equations to better model the dynamics. This is done
by adding J2 terms to the perturbative accelerations[3].

Although including the J2 effect in some form in the Q-
law might seem the proper choice at first, experiments showed
that due to the nature of the formulation, the algorithm might
spend propellant to fight the periodic terms of the perturba-
tion rather than use the secular terms to its advantage. The
possibility of including it in some useful form is not rejected,
but our approach is to use the optimization of the Q-law pa-
rameters to obtain near-optimal results.

2.5.2. Eclipse.

In most of the applications solar electric propulsion is re-
garded, which requires a significant amount of power to oper-
ate the engine(s). Reduction of battery size generally dictates



that thrusting is only possible when the solar panels are il-
luminated by the Sun. Switching-off the engine during the
eclipse period has a significant impact in the orbit evolution,
especially for cases in which the eclipse extends a large frac-
tion of the orbit.

In our implementation we consider eclipses as a constraint
ad-hoc, thus it is only used to determine whether thrust is pos-
sible and it is not included in any way in the computation of
the Q-function. For the calculation of the eclipse a cylindrical
model is used, whereas the Sun vector is approximated with
analytical ephemeris with an accuracy of 36 arcsec between
1950 and 2050.

Three quantities control the thrust switching; the two ef-
fectivity parameters and the shadowing coefficient. During
the orbit propagation the exact location of the transition is
found with an iteration process. This is more important in the
case where the switching is caused by eclipse, as the exact
location is essential to know. Regarding the switching due
to effectivity considerations, the propellant mass and time of
flight are not influenced significantly with respect to the case
where the iteration is omitted.

3. OPTIMIZATION LAYER

The performance of the transfer using Q-law algorithm is
highly dependant on the scalar weights and other parameters
present in the formulation. It is essential to introduce an op-
timization layer to adjust these quantities to obtain the best
trajectories. Moreover, the equinoctial formulation of the
Q-law does not permit to specify free variables in the initial
and target classical orbital elements, as they are coupled in
the modified definition. These can only be considered via an
inclusion in the optimization.

The main drivers in selecting an appropriate optimization
algorithm were

• Global search method,

• Able to handle relatively high dimension,

• Multi-objective.

Local search methods (such as gradient based methods)
do not have the ability to converge on the global optimum, and
are not able to consider multiple objectives. Evolutionary al-
gorithms have been used previously in similar problems[5][6]
with success. A popular method for multi-objective opti-
mization is the NSGA-II genetic algorithm [7] (Elitist Non-
dominating Sorting Genetic Algorithm). The properties of
this method are summarized in Table 2.

NSGA-II was adjusted to handle multi-objective prob-
lems efficiently. The population is sorted based on non-
domination into regions of the objective space. In one region
no candidate is strictly better than the other, and each sub-
sequent region contains less feasible specimen. Once the
suboptimal regions are eliminated, those candidates are given

Table 2. NSGA-II properties
Property Value
Encoding Real-valued
Initialization Random on search space
Parent selection Binary tournament
Recombination Simulated Binary Crossover (SBX)
Mutation Random
Survivor selection Elitist, best on pareto

priority that result in a well-spread Pareto-front. This is
important so that the diversity of the population on multi-
objective level remains high, and does not converge to a small
area (i.e. reduce to a single objective solution).

Formally, the optimization problem is defined as finding
the set of parameters

(Wa,Wf ,Wg,Wh,Wk, ηa, ηr,m, n, r,Θrot) (36)

with additional optimization variables corresponding to free
boundary values (if the problem requires)

(e0, i0, ω0,Ω0, et, it, ωt,Ωt) (37)

such that the goal is maximized (objective functions are min-
imized this case)

min(∆m,∆t). (38)

In case of the minimum time problem, only one objec-
tive is considered, while in the minimum propellant problem
a Pareto-front is computed on the two dimensional objective
space.

The optimization variables include therefore 10 param-
eters of the Q-law, one additional parameter Θrot and extra
variables for each free initial or target orbital element, al-
though it is rare that a problem requires more than 2. Thus
in general the total number of optimization parameters lie
between 11 and 13.

The transformation parameter Θrot rotates the system
around the north-south axis, and proved to be useful in high
eccentricity, high inclination change scenarios. The dynam-
ics are indifferent to this transformation, and other constraints
are modified accordingly (e.g. Sun vector). In extreme cases
this additional optimization parameter reduced the propellant
mass by up to 30%.

Typical values of the NSGA-II parameters (population
size, number of generations) used for an optimization is
problem dependent. After numerous tests, a population size
between 50 and 100 is confirmed to work well with both
minimum time and propellant problems, where the higher
value is advised to obtain a well-spread Pareto front. The
number of generations to run is connected to the difficulty of
the transfer, as in a simple GTO to GEO case as few as 10
iterations can yield well converged populations, yet the most



challenging cases can require up to 100 generations.
The runtime is in the order of couple minutes for a min-

imum time problem up to few hours in case of a difficult
minimum propellant pareto-front optimization1.

The optimization layer is programmed to be entirely
multi-threaded. One of the advantages of evolutionary al-
gorithms is the little effort it requires to parallelize them.
Provided the fitness function computation is self contained,
the population can be evaluated simultaneously, since the
result of each calculation is independent from the others.
This provides a vast speed-up compared to single-threaded
implementation.

4. IMPLEMENTATION

The Q-law and optimization algorithms were implemented in
a core program written in C++. This standalone application
is capable of running orbit transfer computations, and com-
municates via simple input/output files. For easier usage, a
second layer is introduced to provide a GUI interface, that
contains various modules to run. These usually automate a
process that would otherwise be tedious to do manually (e.g.
batch computations, parametric analysis, etc.).

The GUI generates input files for the core program and
parses the output to provide readily available figures and data,
in a seamless way (see Figure 1). The additional advantage
of this architecture is that in case changes are required in the
GUI, a recompilation of the core program is not needed, and
vice-versa. During long computation sequences, the GUI also
provides real-time update on the process (e.g. generation of
the pareto-front for a specific scenario – see Figure 2 for a
GTO-GEO transfer optimization). This information is avail-
able after each iteration of the algorithm, which enables the
user to interrupt, stop and restart the process as see fit.

(a) Osculating ellipses (b) Transfer coast/thrust arcs

Fig. 1. GUI example trajectory evolution plot for a GTO-
GEO transfer

1Test machine: Intel Core i7-3630M @ 2.40 Ghz, 8 threads, 16 GB Ram

(a) Initial population

(b) Converged pareto front

Fig. 2. Evolution of the NSGA optimization for a GTO-GEO
case

4.1. Challenges

There are some numerical problems that need to be solved in
the Q-law algorithm. One is the issue of final convergence,
already discussed in Section 2.4. Figure 3 depicts two cases,
one that converges successfully, and another one where over-
shoot occurs in the last revolution. Due to the non-optimal
step size an oscillation about the target can be observed. Gen-
erally, the optimization process takes care of these cases by
eliminating them from the pool of candidates.

Another challenging problem is finding numerically the
extrema of the Q-function over one revolution (as described
in section 2.2). The function is periodic, but might have sev-
eral minima/maxima that need to be located. Considerable
resources are spent during a pareto-front optimization to find
these extrema in an efficient manner. After an initial scan of
the function over the period, a combination of derivative-free
solvers are used to find the minima and maxima.



(a) Converged case

(b) Not converged case

Fig. 3. Example of difficulties with convergence

5. RESULTS

We selected a number of cases from recent papers to serve as
verification for the developed algorithm. Table 3 contains a
summary of all the orbit transfer scenarios considered.

Table 3. Transfer scenarios
Case A B C E

a (km) 7000 24505.9 9222.7 24505.9
42000 42165.0 30000.0 26500.0

e (1) 0.01 0.725 0.2 0.725
0.01 0.001 0.7 0.700

i (deg) 0.05 7.05 0.573 0.06
free 0.05 free 116.00

Ω (deg) 0.0 0.0 0.0 180.0
free free free 270.00

ω (deg) 0.0 0.0 0.0 180.0
free free free 180.00

T (N) 1 0.350 9.3 2
m0 (kg) 300 2000 300 2000
Isp (s) 3100 2000 3100 2000

The first batch of 4 transfer cases were originally devel-
oped by Petropoulos in his first Q-law paper[1] and have been
consistently used since then as a short of test bench for fur-
ther developments of the Q-law and for other low-thrust opti-
mization algorithms. The same transfer cases have been used
more recently to compare the performance of several low-
thrust computation methods[8]. These cases are both able
to demonstrate the effectiveness of an algorithm and show-
case real-life transfers. The dynamics is straightforward in
these cases, as it is reduced to the two-body problem with no

eclipse constraint, hence the availability of numerous results
from different methods. With permission from the authors,
the plots from Reference [8] are copied directly in this paper
and our equinoctial Q-law results are superimposed, as the
raw data was not available to generate fresh graphics. A list
of these methods follows, additional description can be found
in references[3, 8].

• MIPELEC (Geffroy and Epenoy, CNES)
• T 3D (Dargent, Thales Alenia Space France)
• Ztool (Tarzi, JPL)
• OPTIFOR (Lantoine, JPL)
• Nominal −Q− law (Petropoulos, JPL)
• GA−Q− law (Lee et al[9], JPL)

The remaining scenarios involve test cases with the J2 pertur-
bation and/or eclipse effects. Unfortunately results of many-
revolution low-thrust transfers with these perturbations are
scarce in the literature. Nevertheless, we have found a set
of suitable test cases in order to perform a brief evaluation of
the performance of the equinoctial Q-law.

5.1. A: LEO to GEO transfer

The in-plane circular to circular orbit raising problem has a
known theoretical optimal solution[10], thus it is an appropri-
ate test case for the algorithm. On Figure 4 the performance of
the equinoctial Q-law as well as numerous other, well-tested
algorithms are shown. The calculated pareto-front on the
time of flight versus propellant mass shows good agreement
across the methods. The minimum time solution provided by
the equinoctial Q-law (41.3 kg propellant, 14.5 days time of
flight) is also close to the theoretical optimum at around 41
kg.

5.2. B: GTO to GEO transfer

GTO to GEO is one of the most widely discussed orbit trans-
fer scenario for telecommunication geostationary satellites
equipped with electric propulsion. This test case assumes a
geostationary transfer orbit reached from launch close to the
equator, for instance with an Ariane 5 launcher vehicle.

The minimum time solution consists of two phases, where
the first phase includes an increment in the semi-major axis,
and the second phase applies a close-to-inertial thrust pro-
file to reduce the eccentricity to zero. In the meantime, the
small inclination discrepancy (in this particular case, 7◦) is
corrected by thrusting out of plane at each apogee passage.
Figure 5 shows the pareto front for several algorithms. The
equinoctial Q-law performs well in this transfer as well, pro-
ducing results close to those of T 3D. The minimum time
transfer for continuous thrust leads to 212.7 kg of propel-
lant consumed and a flight time of 138 days. The computed
Pareto-front also follows near perfectly the curve established
by the other algorithms.



5.3. C: Elliptic in-plane transfer

This in-plane transfer is characterised by unusually high
thrust to mass ratio, 31 mN/kg, which is two orders of mag-
nitude higher than typical configurations nowadays. Being
rather far from the very low thrust region, it was questionable
whether the algorithm can handle this scenario. Nevertheless,
by reducing the time step (or equivalently step in true lon-
gitude) drastically, we were able to produce a similarly well
spread and good quality Pareto-front as for the previous case.

In the cases analysed so far the Pareto-front behaved as a
smooth curve, however, here a critical point can be found in
the curve at around 2.5-3 days time of flight, as displayed on
Figure 6.

Fig. 4. Pareto front for scenario A, LEO to GEO transfer
(additional data from Reference [8])

Fig. 5. Pareto front for scenario B, GTO to GEO transfer
(additional data from Reference [8])

Fig. 6. Pareto front for scenario C, high thrust to weight ratio
elliptical transfer (additional data from Reference [8])

5.4. E: GTO to retrograde Molniya

The last case analysed with no J2 or eclipse effect is a very
high inclination change scenario. This transfer truly tested the
boundaries of the algorithm, as the optimized equinoctial Q-
law performs the best and results in fastest convergence with
limited inclination change. The extra optimization parame-
ter (Θrot) was mainly inspired by this case, as the original
algorithm tried to decrease the eccentricity in the first phase
instead of increasing it, which is the optimal strategy.

With this extension of the optimization variables, the
equinoctial Q-law generated results that are in relatively
close agreement with the GA-Q-law (as seen on Figure 7).
However, a considerable 10% penalty in propellant mass can
be observed at flight times over 200 days between the opti-
mised Q-law methods and the T 3D averaged method, which
is recognised as the most mature and robust of the optimiza-
tion methods analysed in Reference [8]. This is illustrating
the intrinsic limitation of the Q-law algorithm as compared to
full optimal control methods.

5.5. B-2: GTO to GEO with eclipse

This case is the same as B with the addition of considering
the shadowing of Earth. Ferrier and Epenoy studied the ef-
fect of seasonal launch dates on the total eclipse duration and
time of flight [11]. We reproduced analogous results with our
algorithm, shown in Figure 8, where the total transfer time
is plotted versus the launch date during one year. The two
curves are in close agreement, and during the Apr-Oct period
the equinoctial Q-law shows a slight improvement over the
results from Ferrier and Epenoy in Reference [11].

We optimized the transfer for 1st January, and used the
same optimization parameters to compute the transfers for



different initial dates. The same process was repeated opti-
mizing the Q-law parameters for all initial dates and we found
no significant discrepancy with the previous results. This is
not generally true for an arbitrary transfer, but experience
shows that varying the initial date does not affect dramatically
the performance of the algorithm when retaining the same op-
timization parameters. This can be exploited to speed up the
computations when performing parametric analysis as is typ-
ically needed in early mission design.

Fig. 7. Pareto front for scenario E, GTO to retrograde Mol-
niya transfer (additional data from Reference [8])
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Fig. 8. GTO to GEO minimum-time transfer with eclipses as
function of initial date

6. CONCLUSION

The equinoctial Q-law together with NSGA-II optimization
proved to be versatile, robust and reliable method for the
computation of low-thrust orbit transfers in the applications

needed for early mission design. It produces results simi-
lar to other, popular methods used nowadays for low-thrust
trajectory optimization. Our implementation compares par-
ticularly well against the classical Q-law, yielding close to
identical results with the advantage that the formulation in
equinoctial elements avoids the singularities for circular or
zero-inclination orbits. It can efficiently handle eclipse con-
straint on the thrust showing little sensitivity of the optimal
Q-law parameters to eclipse seasonal effects. By including as
well the J2 perturbation more realistic orbit dynamics can be
modelled, even if the Q-law is not adjusted to take advantage
of the secular J2 effect, the best transfers can be identified by
the NSGA-II optimizer.

Large savings in computation time were achieved with
the introduction of parallelization, efficient step size control
and the optimization of CPU operations. Compared to the
reported classical GA-Q-law runtime it provides optimized
solutions within comparable times[9], if not shorter.
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