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THE MAIN ASPECTS OF THE INTERORBITAL FLIGHTS OPTIMIZATION 

PROBLEM OF THE SPACECRAFT WITH EPS 

•Thrust acceleration is small compared with gravity acceleration in the vicinity of 

the central body 

•The action of different types of perturbation 

• Large duration of the interorbital flight 

• Large angular distance of the interorbital flight 

The model which describes the motion of the spacecraft with EPS is 

rather complicated 

Optimization problem: 

•Using the indirect optimization method – Pontryagin’s maximum principle 

The main aspects of the motion of the SC with EPS in the vicinity of the Earth: 

Necessity of solving boundary value problem 
 



CALCULATING THE DERIVATIVES IN SOLVING THE OPTIMIZATION 

PROBLEMS FOR ORBITAL TRANSFER 
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It is required to define precise derivatives: 

•derivatives of the residual function of the boundary conditions for solving boundary 

value problem of the maximum principle 

•calculating the right hand side of the system of differential equations of optimal 

motion of the spacecraft with EP taking into account the different perturbations 

 

It is usually necessary to use a fairly complex computational procedures to 

calculate the required derivatives, as the accuracy of the calculations depends on 

the convergence of boundary value problem of the maximum principle, as well as 

the accuracy of modeling of the spacecraft motion within the solution of the 

optimization problem. 
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MAIN METHODS FOR NUMERICAL THE DERIVATIVES  OF THE 

FUNCTIONS 

Finite differences methods 

( ) ( ) ( )
( )

df x f x h f x
O h

dx h

 
 

Forward differences: 

 

truncation error O(h) 

 2( ) ( ) ( )

2

df x f x h f x h
O h

dx h

  
 

truncation error O(h2) 

• There is a subtraction cancellation error associated with the calculation of the difference 

between the two close numbers. The nature of the error lies in the fact that the calculation is  

carrying out with the same relative precision. 

• With decreasing the step size h, error caused by the difference between two close numbers   

increases and after that becomes dominant over the truncation error.  

• For efficient use of finite difference methods it is required to find a compromise between 

these two errors in selecting the step size h. 

Reduction the truncation error is depend on the step reduction of h 

Computational Aspects: 

Central differences: 

0h



5/28 

Complex step method 

 2( ) Im( ( ))df x f x ih
O h

dx h


 

 2 3 3( ) ( ) ( )
( ) ( ) ...

1! 2! 3!

f x f x f x
f x ih f x ih h ih o h

 
      

The expansion of f(x) function in a Taylor series in the close neighborhood of x for the 

increment of its argument in the complex domain: 
 

 

   3 3( )
Im ( ) ( ) ...

3!

f x
f x ih h f x h o h


    

The imaginary part of the expansion : 

The expression for the derivative: 

•Truncation error when using the method of the complex step is the same order as when 

using the central differences– O(h2).  

•Unlike difference methods, we can achieve a significant reduction in its value by setting an 

arbitrarily small step, thus rounding error when the difference between two numbers close 

does not occur due to the lack of subtraction in the expression for the derivative  

•For some functions, subtraction cancellation error can occur because of the smallness of 

the imaginary parts - in the calculation functions in the complex domain 
 

0h

MAIN METHODS FOR NUMERICAL THE DERIVATIVES  OF THE 

FUNCTIONS 

Computational Aspects: 
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2tan( ) tan( ) 1
d

x x
dx

 

•With decreasing the step size relative error of calculating the derivative using the central 

difference (blue line) first decreases monotonically, as long as the prevalent component 

of the truncation error while achieving a minimum. Then, begin to dominate component 

of the subtraction cancellation error, which leads to a monotonic increase in the relative 

error in the determination of the derivative with a further reduction of step size h.  

•The relative error when using the method of complex steps (red line) decreases 

monotonically with the step size, reaching a value corresponding to the relative accuracy 

of the calculations. 

Comparison of the relative error of 

calculating the derivative of  tan (x) 

using the central differences and 

method of comprehensive step by 

step size h. 



MAIN METHODS FOR NUMERICAL THE DERIVATIVES  OF THE 

FUNCTIONS 

•Imaginary part of the expression for the derivative is small with a 

small h. 

•The process of calculating certain functions in the complex domain 

itself can be the difference representation 

 2( ) Im( ( ))df x f x ih
O h

dx h


 

Comparison of the relative error of calculating derivative atan (x) function using the central 

differences and method of comprehensive step by step size h. 

Behavior of relative error as a function of the length of the pitch in the case provided by the same 

complex step method (red line) and the central differences (blue line), due to the appearance of 

subtraction cancellation errors. 

2

1
( )

1

1
( ) ln

2 1

d
arctg x

dx x

i ix h
arctg x ih

ix h


  


         

    

The difference between 

the two close values 
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MAIN METHODS FOR NUMERICAL THE DERIVATIVES  OF THE 

FUNCTIONS 

• Calculation of certain functions in the complex domain, as well as a number of 

computational operations is very costly in terms of computing resources. 

• Small order of the imaginary parts of the complex step method reduces the 

efficiency of its practical application, for example, to calculate the sensitivity 

matrix in the solution of nonlinear boundary value problem by continuation 

method. 

Disadvantages of the complex step method: 
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The method of dual numbers 

Dual number: 

<x,x>=x+dx,   x,  xR,  

x – real part, 

x - dual part,   d2=0 

<x,x,x,..>=x+xd1+xd2+…;                             

x,x,x,…R, 

x – real part,  

x,x,… - elements of vector of the dual parts, 

d1
2= d2

2=… dn
2=0 и didj =0 при ij. 

The dual number as a vector with the dual part s– the form of the number: 

Isomorphism with space R2, which is 

similar to complex numbers 
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Calculation of derivatives 

   
2 3( ) ( ) ( )

( ) ( ) ...
1! 2! 3!

f x f x f x
f x dh f x dh dh dh

  
     

( ) ( ) ( )f x dh f x dh f x   

 ( 1 ) ( 1 )
( )

, ( ) ( )f x d f x d
df x

Dp f x Rp
dx

  

Set h=1: 

Taylor  series expansion: 

• Truncation error in calculating derivatives by dual numbers is zero. 

• In the expression of the derivative there is no difference, which is similar to the method of 

complex steps. 

• The orders of the real and the dual part of the right hand side of the expression are the same, 

or may always be selected as such an appropriate assignment value h. Therefore, unlike the 

method of complex step, we do not face in this case with subtraction cancellation error. 

• It is possible in the process of computation automatically obtain the required values ​​of 

derivatives with relative precision equal to the precision of computing functions. 

Rp – Real Part 

Dp – Dual Part 
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Calculation of derivatives of the function with several variables. 

 

 

1 2

1 2

1 2

1 2

1 1

2 2

1 2

1 2

0

( , ),

,

0 ,

, , ,

1,

( , ) ,

, 1,2.i

i

d

x d

y d

x

y f x x

x x d

x d

y y y y y y d

x

f x x Rp y

f
Dp y i

x












 



 


     
  




  
 

The dimension of the vector 

dual part is determined by 

the number of function 

arguments. 

Example for the function of two variables: 



12/28 

•The method of dual numbers is used to automatic differentiation  

•Dual numbers with a single dual part are used to compute the sensitivity matrix for 

solving the nonlinear boundary value problem of the maximum principle by 

continuation method. 

•Dual numbers with vector dual part are proposed to use in solving the optimization 

problem of the multi-revolution orbital transfer, taking into account the most 

complete perturbation model. In this case it is assumed that the automatic 

calculation of the right hand sides of the equations of optimal motion of spacecraft 

by calculating the optimal Hamiltonian - by virtue of the canonical formalism of the 

maximum principle. 

USING THE METHOD OF DUAL NUMBERS IN SOLVING 

OPTIMIZATION PROBLEM OF ORBITAL TRANSFER 



MODEL OF THE SPACECRAFT MOTION 
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1
sin( )
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y
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x

y

dp p
T

dt b

b l e Tde p

dt b b l S e b W

b l e Tde p

dt b b l S e b W

di p
b l W

dt b

di p
b l W

dt b

dl b b
p W

dt p b


 


  
  

   


  
     


 






 


SC movement with EP is described by the following system of differential equations in the equinoctial 

elements: 
b1=1+excos(l)+eysin(l),          b2=ixsin(l)-iycos(l),         b3=1+ix

2+iy
2, 

ex=ecos(Ω+ω), ey=esin(Ω+ω),ix=tan(i/2)cos(Ω), iy= tan(i/2)sin(Ω), 

l=Ω+ω+υ.  

,

,

a j

j

a j

j

a j

j

S S S

T T T

W W W








  




  

 







SΦj, TΦj, WΦj – perturbations components 

 

 

 

sin( )cos( ),

cos( )cos( ),

sin( )

a

a

a

S P m

T P m

W P m

  

  

 

 


 


 

Sa, Ta, Wa – thrust acceleration 

components 

P - thrust, m – mass of 

SC; θ, ψ – pitch and yaw 

angle, δ{0,1}; 

θ(t)[0,2), ψ(t)[-/2, 

/2] 

Limited thrust: 

dm/dt=-δ(P/w) ОТ 

dm/dt=-(m2a2)/(2Nr) ОМ 

Power limited  

Sa=aS,  

Ta=aT,  

Wa=aW 

w – effective exhaust 

velocity 

Nr -  Reactive Power a=║aS,aT, aW║ 
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FORMULATION OF THE OPTIMIZATION 

PROBLEM 

  0min, [ , ]f fJ m t t t t fixed    

Objective function of the problem is set at a fixed interval of time: 

 - maximization of final mass of SC (EPS for both engines 

models) 

    

 

 

 

1 2 3

1 1 2 3

2 2 2 2

1 1 2 3

2

1
2 3 1 2 33 2

1 2

1

1 2

2 1

1

sin( )cos( ) cos( )cos( ) sin( )

2

, ,

sin( ) cos( )

2 (1 )cos( ) (

x y

x y

OT

m

S T WOM

S T W m

r

l j j j

j j j

e e

p e x e

H H H H

H P m a a a P w

m a a a
H a a a a a a

N

b
H H a S a T a W

p

a p l l

p
a p b l e

b

       





 

  

  

  

   

 
   

   

 

    

  

  

   

1

1 2

3
3 2

1

1 )sin( )

cos( ) sin( )
2y x x y

y

e x e y l i i

b l e

bp
a b e e l l

b
    
















 



          

Hamilton-Pontryagin function: 

 

  

3

3

U

, , | [0,2 ),

U
, , [0,1]

2 2

U

U , , |

OT OT

OT

OM OM

OM S T W ja a a a

    

 
 

 

 
 

   
    
  

 

 

u R

u R

R

Control: 

   7

0, , , , , , , ,
x y x yp e e i i l m fBV t t           ψ R    7

0, , , , , , , ,x y x y fp e e i i l m AC t t    x R



FORMULATION OF OPTIMIZATION PROBLEM  

Terminant: 

ℓ=α0(-m(tf))+β0f0(x(t0))+βkfk(x(tf))+βm0(m(t0)-m0) 

numbers α0, βm0 and vectors β0, βk – Lagrange multipliers  

m0 - initial mass of the spacecraft 

f0(x(t0)), fk(x(tf)) - vector function, which defines parameters of the initial and final orbit 

2 2
0 2 1 2

1

2 20
1 1 22

0 2 2 2 2 2
3 1 2 1 2 3
0

2 2 24
3 1 2 3

;

;

;

.

a a a
u

a a au

u a a a a a

u
a a a a

   
             
   

Optimal control: 

 

0

1, 0;

0, 0;

0 ,1 , 0.





  


  
   

2 2 2

1 2 3 m

P P
a a a

m w
    

u1
0=cos(θ),  u2

0=sin(θ), u3
0=cos(ψ), u4

0=sin(ψ) 

0 0 0

1 2 32 2 2
, ,r r r

S T W

m m m

N N N
a a a a a a

m m m  
  

ОТ problem 

ОМ problem 
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FORMULATION OF OPTIMIZATION PROBLEM  

Adjoints equations for  ОТ and ОМ problem: 

2 2 2

1 2 32

m

d H

dt

d P
a a a

dt m




 
  


  


ψ

x

 2 2 2

1 2 33

m r

m

d H

dt

d N
a a a

dt m





 
   


  


ψ

x

0

0

0

0
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m m

 

 
  
 

 
  
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ψ ψ
x x

Transversality conditions: 
The consequence of the maximum principle 

conditions:   1m ft 

   2 2 2

1 2 3 2 3
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mH P m a a a P w H H       

 2 2 2

1 2 3 2 322
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m

N
H a a a H H

m
    

Optimal Hamiltonian in the case of OT task: 

Optimal Hamiltonian in the case of OM task: 
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H H H

H H H

H H H

m m m
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x

x
ψ ψ ψ

ψ
x x x

Homotopy between OM and OT tasks: 
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APPLICATION OF THE DUAL NUMBERS METHOD IN 

CONTINUATION METHOD 

( ) 0, : , .n n n  f p f R R p R

The system of nonlinear equations corresponding to the boundary value problem of the 

maximum principle: 

 0 0 0 1( , , ), ( ) , , .
d

t t t t t
dt

   
x

x x x

The inner Cauchy problem :  

x:tRN, (x,t,)C1(RNRR)  

K(x(t0),x(t1),t0,t1,)=0, KC1(R2N+3) 

Boundary conditions, according to (*): 

(*) 

 

1

0

( )

0

( ) ,

(0) , 0,1 .

d

d

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





              


  

p p

p f f
f p

p

p p

f(p,)=0 

External Cauchy's problem 

,


 

 

f f

p
-necessary to define  
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APPLICATION OF THE DUAL NUMBERS METHOD IN 

CONTINUATION METHOD 

 
•It is supposed to build the computational scheme using dual numbers with a single 

dual part. 

•At one stage of the external integration the relative error in the calculation of the 

partial derivatives will be of the order is not greater than given relative accuracy of 

internal integration. 

•By increasing the accuracy of external integration, it is possible to reduce the "initial 

data" error (at each step of the external integration) for internal integration, and as a 

result - total error in the calculation of the sensitivity matrix. 

•By increasing the accuracy of both internal and external integration it is possible to 

achieve a more sustainable process with a significantly smaller number of discarded 

steps than in the case of using the method of complex steps to calculate partial 

derivatives 

For solving the external Cauchy’s problem: 



To calculate the sensitivity matrix elements it is required to carry out internal integration over the 

field of dual numbers. Due to the complexity of numerical realization of such integration, it is 

advisable to use the following (equivalent to it) calculation scheme: 

 

2 ,

( ( ) ), 1,2..

( ( ) ), 1 ..2

,

N d N

d

i

i d

i N

DualNumber

Rp i N
y

Dp i N N



 

 


  
  

  
  

y R x

x

x

y y y1

APPLICATION OF THE DUAL NUMBERS METHOD IN 

CONTINUATION METHOD 

The diagram above is repeated at each step of the internal integration. Integrating internal 

Cauchy problem and calculating the dual representation of the residuals, together with their 

values at the same time we get the sensitivity matrix elements. 

19/28 

•Right hand side of the system of differential equations are calculated in the dual 

representation; 

•y – the new expanded system of differential equations of order 2N – is considered in the 

real domain. 
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NUMERICAL  RESULTS 

ОТ-problem without perturbations 

The initial orbit has the following characteristics:  

 p=20000 km, e =0.75, i =25 deg, Ω=ω=0 deg; υ=200 deg.  

The angular distance of the flight is not fixed, the duration of the flight is 90 days. 

SC characteristics are follows: initial mass of 1320 kg, the thrust EPS - 0.4 N, the specific 

impulse – 1500 s.  

The final mass of the SC: 0.88865 [rel.], or 1173.18 kg.  
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NUMERICAL  RESULTS 

•Formalism of the continuation method was used in the analysis of the trajectory in terms of determining the optimum 

angular distance on the trajectory between these orbits. 

• The resulting solution of the problem has been continued by the angular distance from the point corresponding to the 

final value of the true longitude lk
0 of the given solution with two revolutions in the backward direction and seven 

revolutions in the forward direction.  

•This has been implemented as follows: the condition l(tf)=0  was used in the boundary conditions of the problem 

instead of the condition l(tf)-( lk
0(2N)), where N - number of whole revolutions,   - parameter of the continuation. 

• The modified Newton homotopy is used for continuation on the boundary conditions. Each step of the method of 

continuation of solution of the problem corresponds to the current value of the angular distance of lk()=lk
0(2N).  

Each step of the method 

of continuation of 

solution of the problem 

corresponds to the 

current value of the 

angular distance of 

lk()=lk
0(2N). 
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NUMERICAL  RESULTS 

The continued solution by boundary 

conditions: 

• by inclination of the initial orbit 

The continued solution by boundary 

conditions: 

• By radius of perigee of the initial orbit  
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THE PROCEDURE FOR CALCULATING  OF THE RIGHT HAND SIDE OF 

OPTIMAL MOTION EQUATIONS BY DUAL NUMBERS METHOD 

This procedure is based on the use of the canonical formalism of the maximum principle: optimum 

Hamiltonian completely defines the system, describing the optimal process. It takes only one 

calculation of optimal Hamiltonian in the dual representation for each access to the right parts of the 

numerical integration of the system of equations managed spacecraft motion. The procedure can be 

described by the following scheme: 
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x,  - phase vector and adjoints 

vector of the system (dual 

representation); 

H0(,x) - dual representation of 

the of the optimal Hamiltonian 
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NUMERICAL  EXAMPLE 

ОТ-problem with perturbations 

The following perturbations acting on the spacecraft are taking into account :  

 

from the moon and Sun, the non-centrality of the gravitational field of the Earth. When calculating 

the lunisolar perturbations, coordinates of the Moon and the Sun were determined by using DE405 

ephemeris. Centrifugal accelerations of the gravitational field of the non-centrality are calculated as 

derivatives of the geopotential represented as an expansion in terms of spherical functions, 

associated with the Earth ITRS coordinate system. We take into account the precession and nutation 

of the Earth's axis and the movement of the pole according to the model IAU 2006 / 2000A. The 

necessary calculations were performed using the SOFA IAU program. To calculate the geopotential 

model was used Earth's gravitational field EGM-96. 

 

Parameters of the initial orbit of the spacecraft are following: perigee altitude - 5000 km, apogee 

altitude - 80000 km, the i=25 deg, Ω=ω=0 deg, υ=200 deg. The initial mass of the SC - 2500 kg 

thrust - 0.56N, the specific impulse - 1640s. The duration of the flight to GEO - 120 days.  

 

Geopotential - 44.  

 

Date of start corresponds to December 26, 2015 1:00 32 minutes UTC. 

 

Dimensionless mass of SC was found as 0.89493 which is slightly less compared to the same 

problem without taking into account the perturbations - 0.89540. 
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NUMERICAL  EXAMPLE 

Evolution of the semimajor axis of the orbit of the spacecraft [dim] : a) for the entire duration 

of the trip; b) in the range from 18 to 20 days. 

The evolution of the ascending node and argument of pericenter 

b) 

The solid line corresponds to the perturbed solution and point corresponds to unperturbed. 



NUMERICAL  EXAMPLE 

Dependence of change of yaw angle: a) the entire flight time; b) in the range from 35 to 38 

days. 

Dependence of change of the pitch angle a) all trip time; b) in the range 

from 35 to 38 days. 
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b) 

b) 

The solid line corresponds to the perturbed solution and point corresponds to unperturbed. 
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NUMERICAL  EXAMPLE 

Switching function of the EPS – Π [dim ] on the spacecraft 

flight duration ranging from 38 to 50 days. 

The solid line corresponds to the perturbed solution and point corresponds to unperturbed. 



CONCLUSION 

Artistic vision of 

Dawn spacecraft ©NASA 

This paper analyzes two possible aspects of using the of dual numbers 

for solving optimization problems for the spacecraft orbital transfer with 

EP. The first of these corresponds to the use of dual numbers with a 

single dual part to calculate the elements  of sensitivity matrix in the 

solution of nonlinear boundary value problems by the continuation of 

the maximum principle. The second aspect involves the use of dual 

numbers with a vector of the dual part of the purpose of calculating the 

right sides of the optimal motion of the system in the case of solving the 

problem of optimizing the spacecraft orbital transfer, taking into account 

the most complete model of perturbations. 

The results using the dual numbers on the example of the spacecraft 

orbital transfer solution of the problem of optimal fuel consumption with 

EPS with initial elliptical orbit to geostationary orbit are presented and 

analyzed. 
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•We analyzed two possible aspects of using the dual numbers method for solving 

optimization problems for the spacecraft orbital transfer with EP.  

•The first of these corresponds to the use of dual numbers with a single dual part to 

calculate the elements of sensitivity matrix in the solution of nonlinear boundary value 

problem of the maximum principle by the continuation method.  

•The second aspect involves the use of dual numbers method with the vector of the dual 

parts for the purpose of calculating the right hand sides of the optimal motion of the 

system in the case of solving the problem of optimizing the spacecraft orbital transfer, 

taking into account the complete model of perturbations.  

•The results using the dual numbers method for the fuel optimal transfer problem with EP 

from initial elliptical orbit into geostationary orbit are presented and analyzed. 


