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ABSTRACT 

 

The possibility of using the method of dual numbers in 

automatic differentiation for solving optimization problems 

of the low-thrust multi-revolution orbital transfers is 

considered. Traditionally the motion equations for the 

spacecraft with electric propulsion for multi-revolution 

orbital transfers are written in osculating elements or their 

modifications which exclude the special features in the 

right-hand sides of differential equations. These right-hand 

sides of the equations become especially complicated when 

different perturbations influencing the spacecraft movement 

are taken into account. Within the formalism of the 

Pontryagin maximum principle the right-hand sides of the 

optimal motion equations for the adjoints equations are quite 

complicated which results in some difficulties in solving 

optimization problems. Therefore the use of dual numbers 

method in numerical differentiation of optimal Hamiltonian 

for calculating the right-hand sides of the optimal motion 

equations of the spacecraft is effective. Another aspect of 

using the dual numbers method for numerical differentiation 

is to calculate the sensitivity matrix when solving boundary 

value problem corresponding to the optimal control 

problem. In this case, using dual numbers method allows 

obtaining the accurate sensitivity matrix. When using the 

continuation method for solving boundary value problem it 

helps to improve the convergence and to significantly 

reduce the number of steps for the external integration of 

Cauchy problem. The numerical results for optimal multi-

revolution orbital transfer from the arbitrary initial orbit into 

the geostationary orbit are presented. 

 

Index Terms - electric propulsion, dual numbers, 

orbital transfer, trajectory optimization, low thrust 

 

1. INTRODUCTION 

 

The use of the electric propulsion (EP) in the various 

maneuvers in the vicinity of the Earth usually has the 

complicated control structure and transfer trajectory is 

characterized by large numbers revolutions because of the 

low level of acceleration acting on the spacecraft along the 

trajectory of the flight.  The successful implementation 

spacecraft transfer requires the solutions of a number of 

problems related to the optimization of trajectories of 

spacecraft. Describing the motion of the spacecraft can be 

quite complicated and it is more difficult to use the classical 

mechanics for space flight with the low thrust optimization 

methods such as the use of the Pontryagin maximum 

principle [1,2]. For example, in solving optimization 

problems using the formalism  of maximum principle 

including the perturbations acting on the spacecraft with 

electric propulsion, leads to considerable difficulties in the 

analytical form of the right hand sides of the adjoints system 

or it does not possible. In this paper, to avoid this problem 

we propose the use of  dual numbers not only for automatic 

differentiation for the purpose of calculating the right sides 

of optimal spacecraft motion but also for solving nonlinear 

boundary value problem by continuation method.  

 

2. APPLICATION OF DUAL NUMBERS 

METHOD FOR AUTOMATIC 

DIFFERENTIATION 

 

The possibility of using the dual numbers method is 

considered for automatic differentiation in order to calculate 

the necessary derivatives for the trajectory optimization 

problems with electric propulsion. We briefly describe the 

dual numbers method and the methodology of its application 

to perform the required calculations. Let see the standard 

approach of the numerical definition of derivatives. 

It is known that the basis for the numerical 

differentiation of functions is the finite difference methods. 

It is well established in the first place in terms of the 

simplicity of their construction and applications for their full 

definition are sufficient to use the Taylor series expansion of 

the interested function. Thus giving the increment of the 

function h at the point x and expanding it to the second-

order terms in the Taylor series is easy to derive the 

following expression that determines the value of the 

derivative at a given point (for example, forward 

difference): 

( ) ( ) ( )
( )

df x f x h f x
O h

dx h

 
  .         (1)                                                                  

It can be seen from the above expression (1), the value of 

O(h) determines the order of the truncation error caused by 

the finite approximation of an infinite process. For forward 

differences the order of the error is not less than the step size 

h. It follows that we can reduce the magnitude of truncation 
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error selecting the step size as less as possible. However, 

really small values of the step size h, we just approach to the 

difference between the two close values (which is typical for 

all the difference methods in general). In here, there is 

another error for calculation of the derivative that is the 

rounding error due to the difference of two close numbers. 

The nature of the error lies in the fact that the calculation is 

carrying out with the same relative precision. Thus the 

truncation error increases in a continuous reduction of the 

step size h caused by the difference between two close 

numbers to and after that becomes dominant over the 

truncation error. Hence, for the effective use of the finite-

difference method is required to find a compromise between 

these two errors in selecting the step size h. On the other 

hand, there may be other approximation of derivatives on 

the basis of the finite difference method using the Taylor 

expansion to improve the situation in terms of the mentioned 

errors but they do not remove until the end of the problem 

and ensure the accuracy of the step size selection. The 

derivative value for the central differences is determined as 

follows: 

 2( ) ( ) ( )

2

df x f x h f x h
O h

dx h

  
  .          (2)                             

In the equation (2) the truncation error is not less than h
2
. 

Therefore we can improve the relationship between the two 

errors and thereby improve the accuracy of the calculation 

of derivatives. 

There is another way to improve the accuracy of 

the calculation of the derivatives using the complex step 

method. It is possible or even get rid of the above errors or 

to reduce their impact on each other using non real number. 

The complex step method yields the following expression 

for the derivative: 

 2( ) Im( ( ))df x f x ih
O h

dx h


   .         (3)                                          

Equation (3) can be obtained by expansion of a 

neighborhood of a point x in a Taylor series giving 

increment its complex argument: 

2 3

( )
( ) ( ) ...

1!

( ) ( )
... ...

2! 3!

f x
f x ih f x ih

f x f x
h ih

 
    


    



,           (4)                                  

and taking the imaginary part of the equation (4) drive at the 

desired equation (3). Truncation error using the complex 

step method is the same order as for the central differences. 

However, unlike the finite difference methods we can 

achieve a significant reduction in its value by setting the 

small arbitrary step. At the same time due to the lack of 

subtraction in the equation (3), the rounding error in the 

difference between two close numbers almost does not 

manifest itself for any functions. Thus, putting the small step 

size we can achieve a relative accuracy of the computation 

of the derivative which equal to the accuracy of calculation 

of the function f(x).   

Fig. 1 shows the comparison of the relative error of 

the derivative calculation of tan (x) by using the central 

difference method and the complex step method with the 

step size h. It is seen that decreasing the step size relative 

error in computing the derivative using the central difference 

(blue line in the figure) decreases monotonically at first, as 

long as the prevalent component of the truncation error 

while achieving a minimum. Then begin to dominate 

component of the rounding error when the difference 

between two close numbers which leads to a monotonic 

increase in the relative error in the determination of the 

derivative with a further reduction of the step size. The 

relative error when using the complex step method (red line) 

decreases monotonically with the step size reaching a value 

corresponding to the relative accuracy of the calculations. 

 
Fig.1. the comparison of the relative error of the derivative 

calculation of tan (x) by using the central difference method 

and the complex step method with the step size h 

However, unfortunately, not all functions can 

achieve the same picture by using the complex step method. 

Here we are again faced with the manifestation of rounding 

errors. This is due to the fact that by reducing the step size h, 

imaginary parts of equation (3) become very small. A 

process of calculating some of the functions in the complex 

domain itself may have a differential representation. This 

can be illustrated by calculating the derivative of arctg(x). 

During the calculation, this function has the following 

representation:  arctg(x+ih)=-(i/2)ln[(1+ix-h)/(1-ix+h)]. 

Manifestation of rounding errors in this case can be 

illustrated in Figure 2, where the blue line corresponds to the 

using the central difference method and the red line 

corresponds to the using the complex step method. It can be 

seen in the figure that the behavior of the relative error as a 

step size of the function in this case is the same for complex 

step method and central difference method. The use of 

central differences even allows to achieve the better result. 

 
Fig.2. the comparison of the relative error of the derivative 

calculation for atan (x) by using the central difference 

method and the complex step method with the step size h 

In addition, it should be noted that the computation 

of certain functions in the complex domain as well as a 



 

 

number of computational operations is very costly in terms 

of computing resources. A small order of the imaginary 

parts of the complex number using the complex step method 

reduces the efficiency of its practical application, for 

example, to calculate the sensitivity of the matrix elements 

in the solution of nonlinear boundary value problem by 

continuation method. 

The dual numbers are presented in detail in [3]. We 

note only that the ideal is the number of the form 

<x,x>=x+dx, where x, xR, x - the real part,  x -  dual 

part, d
2
=0. For dual numbers with a single dual part of an 

isomorphism with the space R
2
 is analogy with complex 

step method. The dual number with a vector of the dual part 

- number of the form <x,x,x,..>=x+xd1+xd2+…; where 

x,x,x,…R, x - real part, x,x,… - make up part of the 

dual vector, d1
2
= d2

2
=… dn

2
=0 и didj =0 while ij. 

Method of calculation of derivatives is presented in 

[3]. We give it for the case of operations on real numbers 

with a single dual part. We represent the function f(x)  in a 

Taylor series in the neighborhood giving it a purely point x 

dual increment: 

   
2 3

( )
( ) ( )

1!

( ) ( )
...

2! 3!

...

...

f x
f x dh f x dh

f x f x
dh dh


  

 
  


 





 .          (5)                 

Since in the equation (5) all the terms for which dh has 

power greater than two are set to zero and the definition of 

the dual number expression is as follows: 

( ) ( ) ( )f x dh f x dh f x    .                  (6)                                                       

Setting this value at the real part h=1, we obtain according 

to (6) the following expression for the derivative: 

 ( 1 )
( )

f x d
df x

Dp
dx

 .             (7)                                                       

Of course the value of the function f (x) corresponds to the 

real part of the dual number. To obtain the required value of 

the derivative of the function calculating its value in the dual 

representation is enough and to take away from the dual 

part. In this case, the implementation of the computational 

scheme (generating the necessary calculations in dual 

numbers) automatically obtains the corresponding 

derivatives. 

Since the equation (6) , the truncation error in the 

calculation of the derivatives by dual numbers is equal to 

zero. The equation (7) is similar to the of complex step 

method which describe in [4]. But the difference is the 

actual orders and the dual part of the right side of the 

equation (7) or the same as or may always be selected as 

such an appropriate step size h. Therefore, we do not face 

the possible rounding error in the difference between the 

two close numbers in the calculation of the dual 

representation f (x) unlike the use of complex steps method. 

It is possible in the process of computation automatically to 

obtain the required values of derivatives with relative 

precision which equal to the precision of computing 

functions. 

In the case of calculating the partial derivatives of 

functions of several variables similarly applied to the dual 

vector of the dual part [3]. The dimension of the dual vector 

is determined by the number of function arguments. Thus, 

for the function of two variables, we can use the following 

relations: 

 

 

1 2

1 2

1 2

1 2 1 1

2 2

1 2

1 2

0( , ), ,

0 ,

, , ,
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( , ) ,

, 1,2.i

i

d

x d

y d

x

y f x x x x d

x d

y y y y y y d

x

f x x Rp y

f
Dp y i

x









  




    


   




  
 

          (8)                                 

Thus the computation of the function of several variables on 

the relations analogous to (8), together with the value of the 

function, we automatically receive the derivatives values of 

all its arguments with the same accuracy. The above 

specified advantages of using dual numbers method in 

comparison with the complex step method and the much 

smaller amount of computation required in the case of the 

same operations are indicated in [3]. 

The dual numbers is used for automatic 

differentiation as vector part of the dual numbers and for the 

unit numbers. The dual numbers with a single part are 

encouraged to use in solving the nonlinear boundary value 

problem of the maximum principle by continuation method 

to compute the sensitivity matrix. It is dedicated to the next 

section of the article. The dual part of the vector is proposed 

to use in solving the optimization problem for the multi-

revolutions orbital transfer taking into account the most 

complete perturbation model. In this case it is assumed that 

the automatic calculation of the right sides of the optimal 

motion equations of the spacecraft by calculating the 

optimal Hamiltonian (by virtue of the canonical formalism 

of the maximum principle). 

 

3. APPLICATION OF THE DUAL NUMBERS 

METHOD IN CONTINUATION METHOD 

 
The formalism of the Pontryagin maximum principle 

reduces search extremal optimization problems to the 

solution of the corresponding boundary value problem 

which is equivalent to the system of nonlinear 

transcendental equations of the following form: 

( ) 0, : , .n n n  f p f R R p R          (9) 

Using continuation method [5] for the solution of 

the system (9) as compared to the conventional methods of 

the first order has a number of advantages, the main of 

which is its inherent global convergence in carrying out a 

number of assumptions [5,6]. 



 

 

 Let consider the inner Cauchy's problem for a 

system of differential equations describing the optimal 

process with a smoothed piecewise continuous control: 

 0 0 0 1( , , ), ( ) , , .
d

t t t t t
dt

   
x

x x x     (10)                                                          

Where x:tR
N
, (x,t,)C

1
(R

N
RR). Introducing 

the option of continuing in the boundary conditions that 

define the system (5), we obtain the following 

representation: K(x(t0),x(t1),t0,t1,)=0, KC
1
(R

2N+3
). Thus 

the system (5) is now explicitly dependent on the 

continuation on the parameter and represented in the form 

f(p,)=0. Then the external Cauchy's problem [5,6] is 

formulated as follows: 

 

1

0

( )

0

( ) ,

(0) , 0,1 .

d

d


 







              


  

p p

p f f
f p

p

p p

  (11)                                   

Integrating external Cauchy's problem reaches to 

the solution of the system (9). This approach has been used 

successfully in [5,6]. In particular, it enables to continuous 

homotopy between the auxiliary (simpler) and the main task 

- relevant system (9); it is assumed that the solution of 

auxiliary system is known. 

 It is obvious that the accuracy of the calculation of 

the elements of sensitivity matrix for the system (11), a 

member of the right-hand sides of the differential equation 

of the Cauchy problem directly depends on the convergence 

of the continuation method. When the numerical 

approximation of the partial derivatives of (9) for the 

unknown parameters of the boundary value problem is 

calculated, the error in determining the derivative is 

accumulated in external integration which ultimately could 

lead to the gathering on the continuation path. It also has a 

negative impact on the process of external integration - the 

noise in the right-hand sides of differential equations of the 

Cauchy problem leads to a reduction in the integration step 

when the automatic choice and the overall reduction in the 

stability of the computational process. Therefore, in view of 

the above reasons, in this paper we propose to use the dual 

numbers method to calculate the partial derivatives 

constituting the sensitivity matrix of the system (9). 

It is supposed to build the computational scheme 

using dual numbers method with a single dual part. The 

advantages of the dual numbers compared to the complex 

step method and finite difference methods have been 

stipulated earlier. At one step of integration of the external 

relative error in the calculation of the partial derivatives will 

not be greater than the given relative accuracy of internal 

integration. By increasing the accuracy of external 

integration it is possible to reduce the error of initial data (at 

each step of the external integration) for internal integration, 

As a result, the total error in calculating the sensitivity 

matrix is reduced. By increasing the accuracy of both 

internal and external integration, it is possible to achieve a 

more sustainable to continue the process with a significantly 

smaller number of discarded steps than in the case of using 

the complex step method to calculate partial derivatives. 

This is due to the fact that when using the complex 

step method to reduce the truncation error we should select 

the step size as small as possible. The consequently, during 

the computation in the imaginary part of the complex 

domain of the expressions, there is the order of increment 

(or less). Therefore, calculations in the complex region will 

manifest the rounding error due to the difference between 

the two close numbers. 

 It is obvious that the calculation in elements of the 

sensitivity matrix is required to carry out internal integration 

over the field of dual numbers. However, given the 

complexity of the numerical realization of such integration, 

it is advisable to use the following (equivalent to it) 

calculation scheme: 

 

2 ,

( ( ) ), 1,2..

( ( ) ), 1 ..2

,

N d N

d

i

i d

i N

DualNumber

Rp i N
y

Dp i N N



 

 


  
  

  
  

y R x

x

x

y y y1

       (12)                                 

According to (12), the new expanded system of 

differential equations y of order 2N  is considered in the real 

domain. We calculate the right hand side of the system of 

differential equations  (x
d
) (order N) for the inner  

Cauchy's problem in the dual representation. Right hand side 

of the expansion of the system y   are assigned to the 

respective real and dual parts of the value of the previously 

calculated the dual representation of right hand sides of 

differential equations; the values of the extended state vector 

y1 of the system  are determined during the next step of 

integration. Further, based on the expanded phase vector y1 

of the system newly formed the dual representation of the 

phase vector of the system - x
d
. 

The above scheme is repeated at each step of the 

internal integration. Integrating the internal Cauchy problem 

and calculating the residual dual representation on the 

boundary conditions, together with their values at the same 

time we get and we need to calculate the derivatives of the 

sensitivity matrix. 

 

4. THE PROCEDURE FOR CALCULATING OF 

THE RIGHT HAND SIDE OF OPTIMAL 

MOTION EQUATIONS BY DUAL NUMBERS 

METHOD 

 

This procedure is based on the use of the canonical 

formalism of the maximum principle: optimum Hamiltonian 

completely defines the system, describing the optimal 

process. It takes only one calculation of optimal 

Hamiltonian in the dual representation for each access to the 

right parts of the numerical integration of the system of 

motion equations of the spacecraft. The procedure can be 

described by the following scheme: 



 

 

where - x,  - phase vector and adjoints vector of the system 

(dual representation) respectively;  xi, i - components of 

these vectors; xi,0, i,0 - the real part of the phase component 

and the adjoints vectors; H
0
(,x) - dual representation of the 

of the optimal Hamiltonian;
ix , 

i  - the actual values of the 

right sides of the corresponding differential equations; H
0
 - 

the actual value of the optimal Hamiltonian. 
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5. MATHEMATICAL MODEL OF THE 

SPACECRAFT'S MOTION 

 

The motion of the SC with EP is described by the following 

system of differential equations in the equinoctial elements 

[7]: 

  
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      (13) 

where b1=1+excos(l)+eysin(l), b2=ixsin(l)-iycos(l), 

b3=1+ix
2
+iy

2
. Equinoctial elements p,ex,ey,ix,iy,l are defined 

by classical orbital elements: ex=ecos(Ω+ω), ey=esin(Ω+ω), 

ix=tan(i/2)cos(Ω), iy= tan(i/2)sin(Ω), l=Ω+ω+υ, where p - 

semi-latus rectum, e - eccentricity, i - inclination, Ω - right 

ascending node, ω - pericenter argument, υ - true anomaly , l 

- true longitude. S, T, W – reactive components and 

disturbing accelerations acting on the spacecraft: 
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Where SΦj, TΦj, WΦj - acceleration components of the 

spacecraft acquired them under the influence of perturbing 

forces of different nature; Sa, Ta, Wa - components of the 

reactive acceleration which are determined depending on the 

model of the electric propulsion system. Thus for the model 

of unregulated limited thrust they are defined as follows: 

 

 

 

sin( )cos( ),

cos( )cos( ),

sin( ).

a

a

a

S P m

T P m

W P m

  
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 
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

 

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Where P - Thrust, m - mass of SC; θ, ψ -pitch and yaw 

angles, δ - indicator of the engine, δ{0,1}. Three functions 

θ(t)[0,2), ψ(t)[-/2, /2], δ[0,1] define the control 

vector of the spacecraft uOT=(θ ,ψ, δ). For the model of 

power-limited engine the thrust acceleration components Sa, 

Ta, Wa  are  defined by the following: Sa=aS, Ta=aT, Wa=aW. 

Where the control vector uOM=(aS, aT, aW) is defined by the 

three functions aS(t), aT(t), aW(t). 

 In the case of the consideration of spacecraft 

motion with limited engine thrust system (13) is 

complemented by the equation describing the change of its 

mass over time: dm/dt=-δ(P/w), where  w - effective exhaust 

velocity of EP. For power-limited case the equation 

becomes: dm/dt=-(m
2
a

2
)/(2Nr), a=║aS,aT, aW║, where Nr - 

reactive power of the electric propulsion systems. 

 

6. FORMULATION OF OPTIMIZATION 

PROBLEM  

 

It is required an optimum transfer in terms of the required 

amount of fuel between the initial and final orbits in a fixed 

time. Thus as the objective, we consider the following: 

  min,fJ m t                    (14) 

meets the minimum fuel consumption. 

Each of the two models under consideration for the 

electric propulsion systems gives the separate optimization 

problem. We call the problem (14) for the model of power-

limited engine as OM problem and OT problem for non-

limited engine thrust following the terms of the author 

which are introduced in [5,6]. The formalism of the 

maximum principle is used [1,2] to solve this problem (14). 

The Hamilton-Pontryagin function as follows: 

where H1
OT

 and H1
OM

 - of the Hamilton-Pontryagin function, 

depending on the control for ОТ and ОМ problem 

respectively; ψ=(ψp,ψex,ψey,ψix,ψiy,ψl),ψm - adjoints variables. 

Terminant of the problem: ℓ=α0(-

m(tf))+β0f0(x(t0))+βkfk(x(tf))+βm0(m(t0)-m0), where f0(x(t0)), 

fk(x(tf)) - vector function which define the parameters of 



 

 

initial and final orbits x=(p,ex,ey,ix,iy,l); α0, βm0 and vectors 

β0, βk - Lagrange multipliers, m0 - initial mass of the SC. 
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Optimal control in case of OT is defined as follows: 

            

2 2
0 2 1 2

1

2 20
1 1 22

0 2 2 2 2 2
3 1 2 1 2 3
0

2 2 24
3 1 2 3

;

;

;

.

a a a
u

a a au

u a a a a a

u
a a a a

   
       

   
  
   

        

 

 

0

1, 0;

0, 0;

0 ,1 , 0.





  


  
   

                (16)                                                                                                                                           

where u1
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The equations of the adjoints system for OT and OM 

problems with the expressions (15), (16) and (17) are 

defined as follows: 
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The next condition is a consequence of the 

transversality conditions and the non-negativity, and is 

performed for both problems: ψm(tf)=α0, α0≥0. Selecting α0 

determines the appropriate normalization of Lagrange 

multipliers. In the future, we consider α0=1. 

Optimal Hamiltonian for OT problem is defined as 

follows: 
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and for OM problem is defined  as follows: 
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Equations (18) and (19) are proposed to use for the 

automatic calculation of the right hand sides of the system 

of differential equations of optimal motion of spacecraft, 

taking into account the existing the  perturbations of 

different nature. In this case, the nonlinear boundary value 

problem of the maximum principle (9) (for OM and OT-

problem) is solved by using hybrid method of Powell. 

 To solve the OT problem excluding perturbations 

acting on the spacecraft will use the methodology which is 

described in [5,6], based on the application of the 

continuation method. To solve this problem we use the 

homotopy between OM and OT providing the continuous 

and smooth extension of the solution of OM problem to the 

solution of OT problem. This is achieved by introducing 

into the right hand sides of the system of differential 

equations of optimal motion of the spacecraft continued on 

parameter. The system of differential equations of optimal 

motion of spacecraft providing a continuous extension of the 

OM to OT problem is as follows: 
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         (20) 

In this case, to ensure the continuity of the right-hand sides 

of the equation (20), delta function is defined as: 

δ=0.5(1+Π/(|Π|+ε)),, where ε - regularizator. The smaller the 

value of ε, the closer it gets to the function of a piecewise 

constant. 

 

7. NUMERICAL RESULTS 

 

The solutions of OT problem without the perturbations 

produced by the method of continuation and approximation 

of the sensitivity of the matrix elements of dual numbers 

with a single dual part are described in the following. The 

results of OT-problem with the perturbations in the case of 

dual numbers with vector dual part used for calculating the 

right sides of the spacecraft optimal motion system are also 

given. 

 

7.1 OT problem without the perturbations 

We considered the following orbital transfer problem to 

geostationary (GEO) orbit. The initial orbit has the 

following characteristics: focal parameter p = 20,000 km, 

eccentricity e = 0.75, inclination i = 25 degrees; longitude of 

the ascending node and the argument pericenter  are equal to 

zero. The initial value of the true anomaly in the orbit is 

fixed at 200 degrees. The angular distance of the flight is not 

fixed. The duration of the flight is 90 days. The 

characteristics of SC are as follows: initial mass of SC is 

equal to 1320 kg, the thrust is equal to 0.4 N, the specific 

impulse is equal to 1500 s. As a result of the flight, the 

relative final mass of SC is equal to 0.88865, the final mass 

of the SC is equal to 1173.18 kg. The angular distance of the 

flight is equal to 73.2 revolutions 

Formalism of the continuation method was used in 

the analysis of the trajectory in terms of determining the 

optimum angular distance on the trajectory between these 

orbits. The resulting solution of the problem has been 

continued by the angular distance from the point 

corresponding to the final value of the true longitude lk
0
 of 

the given solution with two revolutions in the backward 

direction and seven revolutions in the forward direction. 

This has been implemented as follows: the condition 

l(tf)=0  was used in the boundary conditions of the problem 

instead of the condition l(tf)-( lk
0(2N)), where N - number 

of whole revolutions,   - parameter of the continuation. The 

modified Newton homotopy is used for continuation on the 

boundary conditions. Each step of the method of 

continuation of solution of the problem corresponds to the 

current value of the angular distance of lk()=lk
0(2N). 

The results for the continuation of angular distance are 

presented in Figure 3. 

 
Fig.3. the final mass of the SC [dimensionless] to the 

total angular distance N [the number of revolutions]. The figure 

shows: the angular distance lk
0, corresponding to the original 

solution; globally optimal value of the angular distance - lk
. 

From Figure 3 it is cleared that the functional 

dependence of the total angular distance of the flights is 

monotonic and has among the many locally optimal 

solutions within each revolution, one a pronounced as the 

global maximum. The maximum is achieved by increasing 

the angular distance in two revolutions. Its optimal value 

was 75.23 revolutions. The value of the functional at the 

time is nearly equal to 0.8889. In the figure: lk
0 

is the angular 

distance, corresponding to the original solution; lk
 

is the 

global optimal value of the angular distance. 

It was also implemented the solution on the 

continuation of the boundary conditions of the problem, in 

order to establish the quality of the functional dependence 

on the magnitude of the inclination of the initial orbit and its 

pericenter radius. We considered a reduction in the 

inclination of the initial orbit to the zero and the increasing 

the pericenter radius of the initial orbit to the radius of the 

GEO. The angular distance of the flight in both cases was 

not fixed. Figures 4-5 show the dependences of the 

dimensionless mass of the SC on the inclination and the 

pericenter radius of the initial orbit. 



 

 

 
Fig.4. the final mass of the spacecraft [dimensionless] on the 

inclination of the initial orbit i0 [deg.]. 

 
Fig.5. the final mass of the spacecraft [dimensionless] on the initial 

orbit pericenter radius r0 [dimensionless], Referred to the radius of 

the GEO. 

As seen from Fig.4 the final mass of the SC increases 

monotonically with decreasing initial orbit inclination, 

obviously thus reaching its maximum at zero. 

Functional dependence of the dimensionless initial 

orbit pericenter radius presented in Figure 5. It increases 

monotonically. So, with the increase of the initial apocenter 

radius final mass of the spacecraft increases reaching its 

maximum at the pericenter radius smaller than the radius of 

the GEO, and then begins to decrease. 

 

7.2 OT problem with perturbations  

The perturbations acting on the spacecraft are taking into 

account the following: from the moon and Sun, the non-

centrality of the gravitational field of the Earth. When 

calculating the lunisolar perturbations, coordinates of the 

Moon and the Sun were determined by using DE405 

ephemeris supported in [8]. Centrifugal accelerations of the 

gravitational field of the non-centrality are calculated as 

derivatives of the geopotential represented as an expansion 

in terms of spherical functions, associated with the Earth 

ITRS coordinate system [9]. At the same time we take into 

account the precession and nutation of the Earth's axis and 

the movement of the pole according to the model IAU 2006 

/ 2000A. The necessary calculations were performed using 

the SOFA IAU programs [9]. To calculate the geopotential 

model was used Earth's gravitational field EGM-96. 

Parameters of the initial orbit of the spacecraft are 

following: perigee altitude - 5000 km, apogee altitude - 

80000 km, the inclination - 25 degrees. argument of 

pericenter and longitude of the ascending node assumed to 

be zero. True anomaly of the initial orbit - 200 degrees. The 

initial mass of the SC - 2500 kg thrust - 0.56 N, the specific 

impulse - 1640s. The duration of the flight to GEO - 120 

days. We considered the geopotential 44. Date of start 

corresponds to December 26, 2015 1:00 32 minutes UTC. 

The solution to this problem was obtained using the 

following stages using the preliminary solutions: first 

averaged OM problem without perturbations is solved, then 

averaged OM problem within the above model, after that it 

defines a solution of non averaged OM problem with 

perturbations and finally this solution was used as an initial 

approximation to the considered OT problem. 

As a result, the dimensionless mass of SC was 

found as 0.89493 which is slightly less compared to the 

same problem without taking into account the perturbations 

- 0.89540. 

Figures 6-11 show the main characteristics of the 

solution for OT problem in the given perturbations. In each 

figure the comparison to the given appropriate unperturbed 

solution is shown. In all the figures the solid line 

corresponds to the perturbed solution and point corresponds 

to unperturbed. 

Figure 6 show the dependence of the semi-major 

axis on flight time. This fragment is enlarged depending on 

the range of 18 to 20 days is shown in 6b. In both cases, the 

semi-major axis varies non-monotonically; in this case 

clearly shows the difference of the two dependencies, 

reaches a maximum at flight time of 50 day. On fig.6b 

visible manifestation of disturbances acting on the non-

centrality of the gravitational field of the Earth is passive the 

perturbed trajectories of spacecraft while passing periapsis. 

 

              
Fig.6. The semimajor axis of the orbit of the spacecraft (a) for the 

entire duration of the flight; b) in the range from 18 to 20 days. 

Figure 7 and 8 show the dependences of longitude 

of the ascending node and argument pericenter on the flight 

time. It can be seen clearly the contribution of the non-



 

 

centrality of the gravitational field of the Earth in the 

evolution of these elements. 

 
Fig. 7.  The longitude of the ascending node of the spacecraft on 

flight time 

 
Fig.8. The argument of  pericenter of the spacecraft on flight time 

Figure 9a and 10a show the obtained optimal 

spacecraft control program for yaw and pitch angles. 

Enlarged fragments of these dependencies are shown in 

figures 9b and 10b. It can be seen that the change in the yaw 

and pitch angles for the perturbed motion ahead of the 

corresponding change in phase to the unperturbed; thus, the 

nature of dependencies generally repeated. The switching 

functions of the electric propulsion systems are similar. 

Fragments of these dependences are presented in Figure 11. 

 

 
Fig.9. The yaw angle: a) for the entire flight time; b) in the range 

from 35 to 38 days. 

 

 

 
Fig.10. The pitch angle: a) for the entire flight time; b) in the range 

from 35 to 38 days. 

 
Fig.11. Switching functions of the electric propulsion 

system on spacecraft flight duration from 38 to 50 days 

 

8. CONCLUSION 

 

This paper analyzes two possible aspects of using the dual 

numbers method for solving optimization problems for the 

spacecraft orbital transfer with EP. The first of these 

corresponds to the use of dual numbers with a single dual 

part to calculate the elements of sensitivity matrix in the 

solution of nonlinear boundary value problems of the 

maximum principle by the continuation method. The second 

aspect involves the use of dual numbers method with the 

vector of the dual parts for the purpose of calculating the 

right hand sides of the optimal motion of the system in the 

case of solving the problem of optimizing the spacecraft 

orbital transfer, taking into account the most complete 

model of perturbations. The results using the dual numbers 

method for the fuel optimal transfer problem with EP from 

initial elliptical orbit into geostationary orbit are presented 

and analyzed. 
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