

Solar System geometry tools with SPICE for ESA's planetary missions

Marc Costa Sitjà

ESA SPICE Support Engineer & Rosetta Science Operations Engineer ESAC, ESA, Villanueva de la Cañada, Spain 16/03/2016 ICATT

Issue/Revision: 1.0

Reference: Presentation Reference

Status: Issued

ESA UNCLASSIFIED - Releasable to the Public

SPICE be good

> SPICE is an information system that uses *auxiliary data* to provide Solar System geometry information to scientists and engineers for planetary missions in order to plan and analyze scientific observations from space-born instruments. SPICE was originally developed and maintained by the Navigation and Ancillary Information Facility (NAIF) team of the Jet Propulsion Laboratory (NASA).

What do we understand by auxiliary data?

Ancillary Data

- Space flight projects need a set of "ancillary data" to support:
 - Mission design
 - Science Ground Segment design, development and testing
 - Flight engineering operations
 - Science observation planning
 - Quick look science data analysis
 - Science data archive preparation
 - And maybe most important of all: science data analysis!

We use ancillary data in the whole mission lifecycle.

Ancillary Data

- When we talk about "ancillary data" we talk, minimum of spacecraft trajectory and orientation
- An in-house "minimal" model can be put in place: personnel will need to produce, validate, dsitribute and archive reconstructed sc orbit and attitude data but... The big picture is complex:
 - Almost everyhting moves and/or rotates (with multiple sources providing different values)
 - Many reference frmes (defined multiple times) are used
 - Many coordinate systems are uses (without standard definitions)
 - Size and shape estimates of target bodies do change
 - Several time systems are used
 - National/inter-project interest might be in conflict.
- Maybe Dogbert the consultant was wrong.

Ancillary Data

- Ancillary data also includes:
 - Reference frame (aka coordinate system) specs
 - Instrument specs (mounting alignment and field-of-view specs)
 - Target body (planets, small bodies) physical and cartographic constants

SPICE in a nutshell

- SPICE provides users a large suite of SW used to read SPICE ancillary data files to compute observation geometry
- SPICE is multi-mission and can be used in any kind of planetary mission* (flyby, orbiter, lander, rover...)
- SPICE is open, very well tested, extensively used and provides tons of resources to learn it and implement it.
- > SPICE is the recommended means of archiving ancillary data by NASA's PDS and by the International Planetary Data Alliance
- SPICE ancillary data comes from:
 - The Spacecraft
 - MOC/SGS
 - Spacecraft manufacturer and Instrument teams
 - Science Organisations
- SPICE is used to organise and package these data in a collection of files called "kernels"
- SPICE includes SW for writing, reading kernels and computing observation geometry from kernels

SPICE tools - WebGeoCalc

WebGeoCalc demo

SPICE tools - Cosmographia

Cosmographia demo

SPICE tools - Rosetta SGS tools

SPICE tools are used are usde in the Long Term Plan planning cycle which features interations between liaision sicientists and the instrument teams to produce a skeleton plan for the Medium Term Plan periods:

- > **3dtool**: web-based tool used to analyze the feasibility –in terms of science obsercations- of the early skeleton trajectories that SGS was designing during the Rosetta Escort phase.
- ➤ **Flying potato:** helps the instrument teams operations engineers to generate pointing snippets for observations that are used to build up the Pointing Timeline requests for FD.
- ASPEN: automated and semi-automated scheduling software
- Cost function: quantifies the total amount of nadir available for a consolidated Attitude timeline: the In-Situ instrument teams evaluate it.

a

SPICE kernels

Cosmographia setup for JUICE and the following kernels:

- KERNELS/lsk/naif0009.tls
- KERNELS/spk/mantra.jup_a5d_140a_lau_fin_bet_500.bsp
- KERNELS/spk/de405.bsp
- KERNELS/spk/jup230.bsp
- KERNELS/ck/quaternions_europa_flybys.bc
- KERNELS/sclk/juice_YYMMDD_step.tcp
- KERNELS/pck/pck00010.tpc
- KERNELS/fk/juice_v01.tf
- KERNELS/ik/juice_janus_v00.ti

Author Name | Presentation Reference | ESAC | 23/11/2015 | Slide 10

SPICE kernels

SPICE kernels

Author Name | Presentation Reference | ESAC | 23/11/2015 | Slide 12

Conclusion

Author Name | Presentation Reference | ESAC | 23/11/2015 | Slide 13

EXTRA Slides – SPICE status at ESAC

Currently:

- VEX, MEX, Rosetta, EM16, BepiColombo, Solar Orbiter, JUICE are serviced
- Pipeline in place for VEX, MEX, Rosetta to generate operational kernels
- FTP with all kernels available
- Existing suite of tools/scripts/pipelines
- WebGeoCalc for JUICE and BepiColombo

In development:

- Pipeline for EM16, BepiColombo, JUICE and Solar Orbiter to generate operational kernels
- Extension and consolidation of adhoc suite of tools/scripts/pipelines
- Dedicated SPICE servers for kernels
- WebGeoCalc for all serviced missions
- Cosmographia for all serviced missions