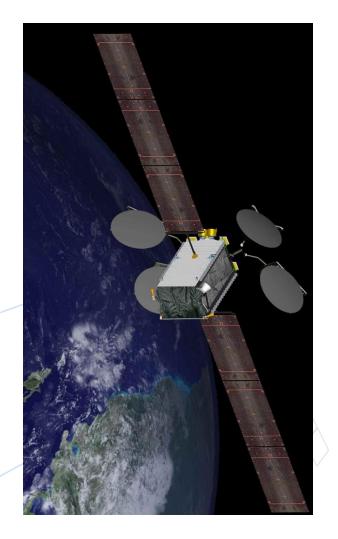


Advanced Electric Orbit-Raising Optimization and Analysis with LOTOS 2

Sven Schäff and Martin Jürgens Astos Solutions GmbH, Stuttgart, Germany

6th International Conference on Astrodynamics Tools and Techniques 17 March 2016, Darmstadt, Germany

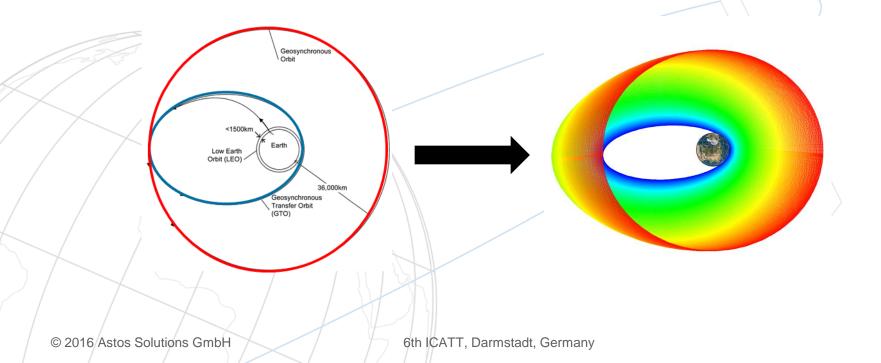
Outline


Orbit Raising

Motivation

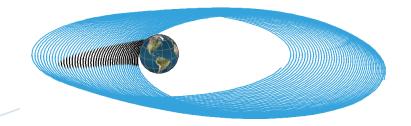
Key Features

Software Overview


Conclusion

Electric Propulsion for Orbit Raising

- 1. Most telecom spacecraft are launched into a transfer orbit
- 2. Spacecraft employs electric propulsion to transfer from launch orbit to the mission orbit
- 3. GTO-GEO transfer
 - ~12% propellant consumption (vs. 40% chemical)
 - Transfer duration prolonged up to several months



Motivation

• Optimization and analysis of high-fidelity transfer trajectories

• Optimized maneuver planning

Software for Guidance & Navigation

Mission Analysis

Key Features

• Hybrid transfers and pure electric orbit-raisings

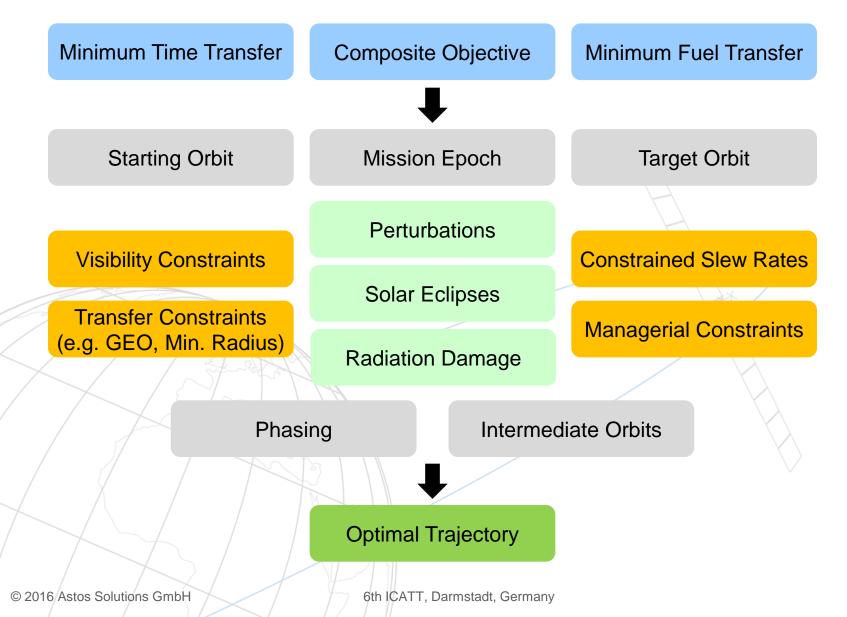
cenario 1

O to GE

- Support of operational trajectories
- Controlled 6DoF attitude
- Verification of trajectories
- Database
- Post-processing
- Reports
- Windows & Linux platform

the initia

mulation



			LOTOS - W:\	SOURCE/LOTOS/trunk	example	s\GTO_to_GEO.	.gtp		
nario Window Info									
	?								
Configure Scenario 🖌 Compute	e Transfer 🖋 Optimize Tra	ansfer 🖋 Verify Trans	ifer						Action: Ini
D_to_GEO ✓ Modelling ✓	Initial orbit: 🔺								^ + +
Environment Central Body Third Bodes Spacecraft Power Propulsion	Regresentation: Keplerian Benents v Reglerian elements: A Orbit shape: Apoppis and Periopis Abtude v							E v	6 Initial Guess An Initial Guess (or Initial Guess Generativ Initialization) is mandatory for the optimizati and does not only provide an initial solution b
AOCS V	Periapsis altitude:	250.0	Kilo-Meter 🗸	Argument of periapsis:	eustorn	178.0	Degree	~	also the required grids. Both is then input to the optimization problem. The initial guess generati
Ground Stations 🖋									initialize the scenario and customizes all
Initial Guess EP Transfer 📝	Inclination:	27.0	Degree v	RAAN:	oustom	0.0	Degree	~	optimizable parameters like controls and real
- Propagator Settings Optimization Optimizer Settings Constraints Constraints	Epoch: A Time standard: TT	✓ Date format:	Julian Date 🗸 🗸	Date: 2456372.5					parameters. The values for the optimizable parameters are provided by the model, and are then used to integrate the states. Since the model does not know the optimal solution, it is just a quess for the optimizable parameters,
Ost Functions Ost Functions Sig Ords Integer Parameters Real Parameters Real Parameters Ordstands Info Phase Overview Ords Bounds Phase Overview Ords Bounds Programs Programs Output Setting Output Setting Output Analyses Massion_Analyses	Atstude control history: A Representation: Defined by: Analytic steering laws: A Sub-synchronous trans Defined by: 1. Law: Change orbit es 2. Law: Change orbit es Initialize	Automatic Computatio		¥)					hence the name initial guess. Typically, the init guess generation is based on simple formulation for the parameters such as constant values. Bu also analytical control hous are very often used descrobe the behaviour of an optimizable parameter (sepecially for controls). Next, an initial guess has also to provide the grids to discretize the optimal control problem. Is an essential task when using gradient based methods such as SOS or SMOPT. The discretization problem, as well as on the quality of the results.
	15:32:24.3 Session sta	TOS Scenario W:\SOURC	E\LOTOS\trunk\examples\ s.	GIO_to_GEO.gtp.					Initialized on the right side of the totical. Depending on the scenario configuration, one of two different trees is provided:

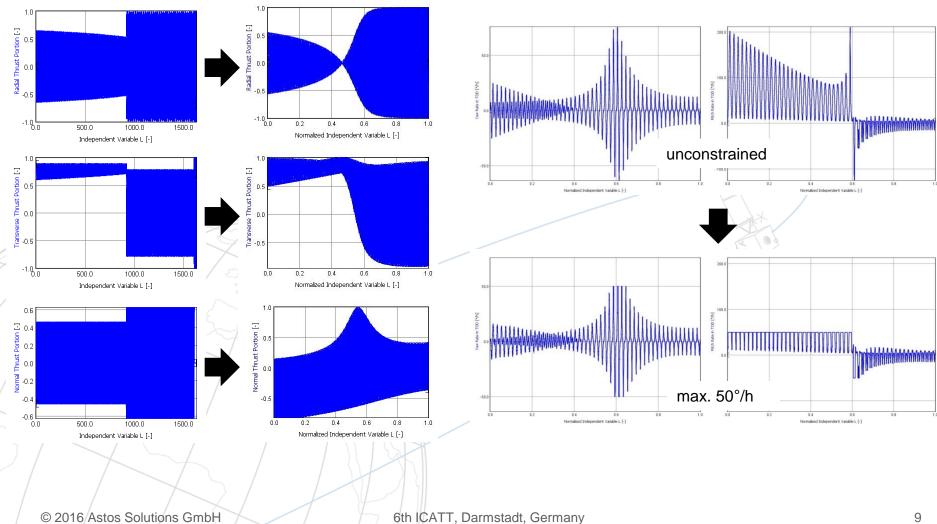
Software Scheme

Environment

Radiation belt: 🔺						
Defined by:	Hollow Sphere 💌					
Hollow sphere:	*					
Inner radius	s: 7000.0	Kilo-Meter 💌	Outer radius	: 12000.0	Kilo-Meter	T
Dwell time as st	tate: disabled req	quired for appropriate cost function	,			
Stationary Ring (GB	EO-Ring): 🔺					E
Inner radius:	42050.0	Kilo-Meter	Outer radius:	42250.0	Kilo-Meter	T
Lower height:	-75.0	Kilo-Meter 💌	Upper height:	75.0	Kilo-Meter	V
Environment effect	ts: 🔺					
Atmospheric dra	ag: disabled					
Solar radiation p	pressure: disabled					
Solar wind:	disabled					
Third body pert						
Third body per d						
Ephemeris computa	ation: SPICE 💌					
	Tastell					A sta
Ground stations: 🔺						
Add Re	emove					
	Name	Altitude	Dea	Longitude	Degree	Latitude
- Weilheim		1.0	Deg 11.1		Degree 47.9	
Perth		22.2	115.		-31.8	
Item: 🔺 ——						Ę-
Name:	Weilheim					
Altitude:	1.0	Meter				
Longitude:	11.1	Degree 🔹				
Latitude:	47.9	Degree 💌				
	,	,				

Spacecraft

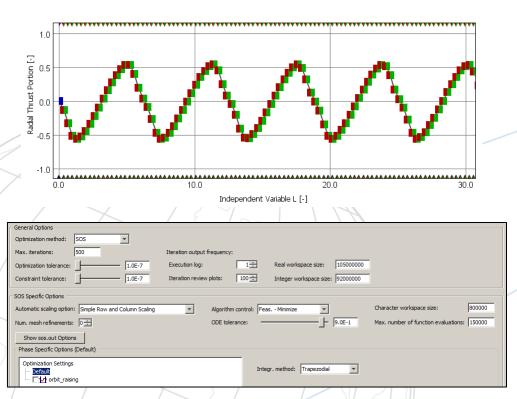
		Slew rates: 🔺				E	
Spacecraft: 🔺		Values are used during optimiza	ation as path constraint or L	agrange cost, and for the analys	is.		
Total mass: 1000.0	Kilogram 💌	About body x axis: 🔺					
	Meter**2	EP on Upper Limit 💌	150.0	Degree/Hour	-		
Reflectivity coefficient: 1.3	C _R u	EP off Upper Limit 💌	200.0	Degree/Hour	•		
Drag coefficient: 2.5	C _D u	About body y axis: 🔻	Pro	pulsion: 🔺			
Moments of inertia: 🔺		About body z axis: 🔻		Thrust: 🔺			
XX: 700.0 Kilogram*Meter**	*2 💌	Maximum torque: 0.0	0015	Defined by: Cons	tant 💌		
YY: 50.0 Kilogram*Meter**		Maximum wheel momentum:	0	Thrust: 0.15		Newton	
ZZ: 700.0 Kilogram*Meter**	*2 •	1st star tracker: 🔺 🛛 🖻	nabled	Specific impulse: 🔺			
	$\langle \rangle$	Only for analysis.		Defined by: Cons	tant 💌		
~ ~	\sim	Boresight direction: 🔺		I _{SP} 2000	.0	Second]
plume		x: 1.0	у:	PPU efficiency:	100.0	Percent	T
	\sim	Field of view: 5.0	0	Minimum permissible power:	0.0	Watt	•
	★z	2nd star tracker: 💌 🛛 er	nabled	Maximum permissible power:	1000.0	Watt	•
	Γ T			Bang-Bang thrust control:	disabled		
				Schedule:	disabled		
	××			Edipse shutdown: Minimum sun angle:	10.0	Degree	▼ only for analysis
				Firing limitations:	enabled	,	
Solar array:	1 7 API as			Only for analysis.			
Reference area: 37.5	Meter**2			Minimum firing duration:		10.0	Minute
Power output: 3000.0	Watt			Maximum firing duration:		2.0	Year
				Minimum period between two	firings (cold start):	30.0	Minute
Battery: enabled		Ę:		Minimum period between two	o firings (warm start):	10.0	Minute
Capacity: 6000.0 Depth of discharge: 70.0	Watt*Hour Percent			Thrust vector disturbance:	disabled		
	Ji crean						


© 2016 Astos Solutions GmbH

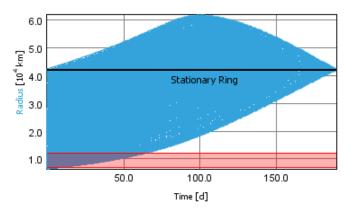
K | Ast

S

Dynamics



Optimization


Solvers

- MIDACO (ant colony optimization)
- SOS (Sparse Optimization Software)
- WORHP (European sparse NLP solver)

inal I	nal Boundary Constraints							
Item Selection								
	Name							
5	eccentricity_(range)							
6	inclination_(range)							
7	apoapsis							
8	periapsis							
9	circular_radius							
10	circular_velocity							
11	radial_velocity							
12	periapsis_van_Allen_(lower_limit)							
13	geographic_longitude_(range)							
14	max_transfer_duration_(upper_limit)							
15	equinoctial_p							
16	equinoctial_f							
17	equinoctial_g							
18	equinoctial_h							
19	equinoctial_k							
20	equinoctial_L							

© 2016 Astos Solutions GmbH

6th ICATT, Darmstadt, Germany

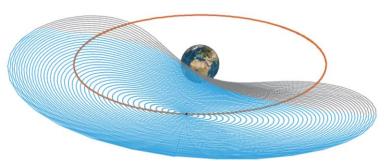
User Interface

Astos

Frontend and command line interface

Customizable output

- Scenario input and output (scalars, functions, ...)
- Maneuver plan and eclipses as dedicated output files


Automatic post-processing

Customizable (e.g. AOCS, EP, eclipses, ...)

Reports

- Customizable
- Automatic (1-click)

Description:				
Content template:	A			
GEN ₩+	^{2.56}			
Body Text	Default	• A* 🖲 B		
Missior	n Analysis Rej	port		
1. Overvie	ew			
1.1 Purpose	of the Document			
Describe the	purpose of the documen	t		
1.2 Mission	Description			
	io Description e scenario description			
1.2.2 Ground	l Stations Network			
1.3 Initial a	nd Target Orbit			
		Initial	Target	
1		í	i i	

Mission Analysis Report

1. Overview

1.1 Purpose of the Document

Describe the purpose of the document

1.2 Mission Description

1.2.1 Scenario Description

Insert here the scenario descriptio

Name Altitude (m) Longitude (°) Latitude (°) 1 Weilheim 1.0 11.1 47.9

2 Perth 22.2 115.9 -31.8

1.3 Initial and Target Orbit

	Initial	Target
Apoapsis altitude (km)	35,786.000	35,786.000
Periapsis altitude (km)	250.000	35,786.000
Apoapsis radius (km)	42,164.137	42,164.137
Periapsis radius (km)	6,628.137	42,164.137
Semi-major axis (km)	24,396.137	42,164.137
Eccentricity (-)	0.72831	0.000e00
Inclination (°)	27.000	0.000e00
Longitude ascending node (°)	0.0	0.000
Argument of periapsis (°)	178.0	0.0
True anomaly (°)	180.0	0.0
Julian date (d)	2,456,372.5	-

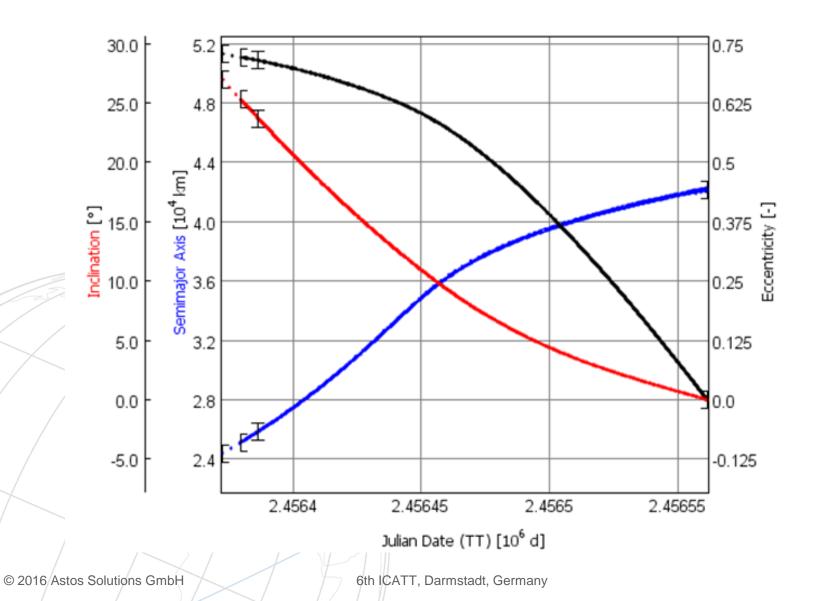
Initial Guess Settings

Independent variable	Equinoctial L
Normalized independent variable	False
Revolutions	259
Attitude control representation	Unit Vector
Attitude control frame	RTN Frame
Attitude control from file	Calaa

Hybrid Transfer

Astos

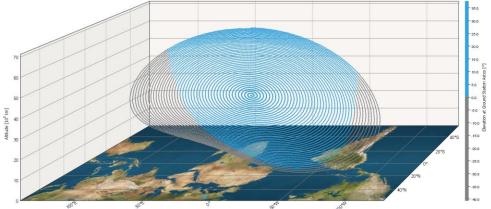
Chemical orbit-raising


Chemical orbit-raising: 🔺			
1st burn:	Periapsis 💌		
2nd burn:	enabled Apoapsis 💌		
3rd burn:	enabled Periapsis 💌		
Out-of-plane maneuver:	enabled		
Max. duration of each burn:	20.0	Minute	v
Thrust:	400.0	Newton	•
Specific impulse:	300.0	Second	v
Max. total transfer duration:	enabled 190.0	Day	•
Min. periapsis radius:	enabled 10000.0	Kilo-Me	ter 💌

followed by electric orbit-raising to target orbit

Final orbit: 🔺		10.141					 	
Representation:	Keplerian Elements 💌	Relative longitude:	custom	37.0	Degr	ee 💌		
Keplerian elements: 🔺 -							 	
Orbit shape:	Semimajor Axis and Eccentric	ity 💌						
Semimajor axis:	42164.137	Kilo-Meter	T	True anomaly:	custom	0.0	Degree	–
Eccentricity:	0.0	None	Ŧ	Argument of periapsis:	custom	0.0	Degree	•
Indination:	0.0	Degree	Ŧ	RAAN:	custom	0.0	Degree	•

Operations



Conclusion

- Advanced tool for EOR
- Optimization & Analysis
- Hybrid Transfers

Support of Spacecraft Operations

Product website: https://www.astos.de/products/lotos Product flyer: https://www.astos.de/downloads Contact: service@astos.de

© 2016 Astos Solutions GmbH