

1



**6th International Conference on Astrodynamics Tools and Techniques** 

# SENSOR FUSION ANALYSIS FOR HEO SPACE DEBRIS USING BAS<sup>3</sup>E

C. Yanez, J. C. Dolado and A. M. Antón

15/03/2016

Darmstadt

- TEST SCENARIOS DEFINITION
- VISIBILITY ANALYSIS
- ORBIT DETERMINATION RESULTS
- CONCLUSION



COPS

- TEST SCENARIOS DEFINITION
- VISIBILITY ANALYSIS
- ORBIT DETERMINATION RESULTS
- CONCLUSION



## **BAS<sup>3</sup>E SIMULATOR**

- BAS<sup>3</sup>E is a CNES tool that enables the analysis of the performance of space surveillance networks (on-ground or space-based) as well as the algorithms involved in the catalogue maintenance, analysis and planning systems
- Simulator architecture and MMI under Eclipse RCP
- Based on CNES-own JAVA flight dynamics libraries
- Parallel computing
- Executed on CNES clusters

Need of simulating thousand of space debris objects

15/03/2016

- Independent computation stages linked by different persistence means:
  - ✦ SQL Databases : object DB, sensor DB, …
  - Binary files databases: ephemeris files, observations files, …
  - ASCII files



#### **STAGES LINKAGE – REAL WORLD**



Cones

#### **STAGES LINKAGE – SSA SYSTEM**



6

15/03/2016

# • TEST SCENARIOS DEFINITION

- VISIBILITY ANALYSIS
- ORBIT DETERMINATION RESULTS
- CONCLUSION

7



#### **OBJECTS POPULATION**

- Objects list comes from 2009 ESA-MASTER population database of objects larger than 10 cm in or crossing the LEO region> 20 000 objects
- Constraints on maximal perigee altitude (600 km) and minimal apogee altitude (10000 km)



| eccentricity > 0.4       |           |
|--------------------------|-----------|
| Number of objects : 2139 | Object DB |

Propagation to obtain reference/predicted orbits:

#### In real world simulation

- Earth potential up to 12th order and 12th degree.
- Drag force with MSIS2000 model for atmospheric density.
- Luni-solar perturbations. \*
- Solar Radiation Pressure.

#### In SSA system simulation

- Earth potential up to 6th order and 6th degree.
- Drag force with MSIS2000 model for atmospheric density.
- Luni-solar perturbations.

8

#### 6th International Conference on Astrodynamics Tools and Techniques

#### **SENSORS LOCATION**



9

¢ cnes

# **TYPE OF SENSORS**

#### Telescopes (one only type)

- Measurement noise: 3,0 mdeg
- Time between observations: 30 s
- Visibility constraints:
  - Object elevation(0-90 deg)
  - Object distance(> 20 000 km)
  - Night: Sun-Zenith angle(113-180 deg)
  - + Illumination: object illuminated by the Sun

#### Radars (two types)

- Measurement noise : see table
- Time between observations : 5 s
- Visibility constraints :
  - Object elevation (0-90 deg)
  - Object distance (100 2 000 km)

| Noise            | Distance Radar (DIS) | Doppler Radar (DOP) |
|------------------|----------------------|---------------------|
| Angular          | 10.0 mdeg            | 10.0 mdeg           |
| measurement      |                      |                     |
| Range/Range rate | 10 m                 | 1 m/s               |
| measurement      |                      |                     |

Sensor Location
Type of sensor

15/03/2016

#### **SENSOR NETWORKS**

| Name | Composition                                                       |
|------|-------------------------------------------------------------------|
| 0T4R | French Guiana + Reunion Island + French Polynesia + Gabon         |
| 2TOR | TAROT                                                             |
| 2T1R | TAROT + French Guiana                                             |
| 2T2R | TAROT + French Guiana + Reunion Island                            |
| 2T3R | TAROT + French Guiana + Reunion Island + French Polynesia         |
| 2T4R | TAROT + French Guiana + Reunion Island + French Polynesia + Gabon |

Plus a suffix indicating the type of radar, for instance, 0T4R-DOP

Total number of sensor networks : 11

- TEST SCENARIOS DEFINITION
- VISIBILITY ANALYSIS
- ORBIT DETERMINATION RESULTS
- CONCLUSION





#### **VISIBILITY STATISTICS**

• Visibility opportunities: how many objects? How often?

- Visibility duration: how long?
- Sensor load: how many objects simultaneously?

We present visibility statistics for the <u>2139 objects population within a</u> <u>6 days timespan</u>



#### **VISIBILITY OPPORTUNITIES - RADARS**

#### Latitude dependence



Cones

#### **VISIBILITY OPPORTUNITIES - NETWORKS**



Visibility Opportunities of Surveillance Networks

15/03/2016

Cones

#### **VISIBILITY DURATION**



**C**cnes

#### **SENSOR LOAD - RADARS**



15/03/2016

#### **SENSOR LOAD – TELESCOPES**



Cones

#### **SENSOR LOAD – TELESCOPES**



**C**cnes

- **TEST SCENARIOS DEFINITION**
- VISIBILITY ANALYSIS
- ORBIT DETERMINATION RESULTS
- CONCLUSION



## ORBIT DETERMINATION WITH LSM

Time span of orbit determination : 6 days

Initial state vector of space debris objects is not perturbed

- Initial covariance in TNW frame :
  - Position sigma vector = (10 km, 5 km, 5 km) et
  - Velocity sigma vector = (10 m/s, 5 m/s, 5 m/s)
- Simplified dynamical model w.r.t. the model used in the real world simulation
- Estimation of a dynamical parameter related to the drag force
- Orbit determination using :
  - Least squares method (LSM) : results follow
  - Extended Kalman Filter (EKF) : similar results to LSM

#### FINAL COVARIANCE IN ALONG-TRACK DIRECTION



22 6th International Conference on Astrodynamics Tools and Techniques

15/03/2016

Cones

#### FINAL COVARIANCE IN ALONG-TRACK DIRECTION



6th International Conference on Astrodynamics Tools and Techniques

23

15/03/2016

Cnes

#### FINAL COVARIANCE IN ALONG-TRACK DIRECTION



15/03/2016

Cnes

#### FINAL COVARIANCE IN RADIAL DIRECTION



25 6th International Conference on Astrodynamics Tools and Techniques

15/03/2016

Cnes

#### **COVARIANCE REPRESENTATIVITY**



Dynamical model must be close to real one for the covariance to be representative of the error  $\rightarrow$  need for estimating more dynamical parameters of poorly-known forces.

- TEST SCENARIOS DEFINITION
- VISIBILITY ANALYSIS
- ORBIT DETERMINATION RESULTS
- CONCLUSION

OUTLINE

Coes

# CONCLUSIONS

- BAS3E is a modular and flexible tool that enables to perform a large variety of simulations for analyzing the capabilities and performance of space surveillance systems in different scenarios.
- Sensor data fusion presents advantages with respect to the use of single-type sensor networks for the orbit determination of HEO objects. In particular:
  - Number of accessible objects is increased,
  - ◆ Possibility of observations on perigee (drag coefficient estimation) and apogee (sun radiation pressure coefficient estimation) → Improves covariance representativity,
  - Covariance in 2T2R cases is in general better than in 0T4R case.