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ABSTRACT 

 

This paper describes an application using BAS
3
E, a 

simulation tool developed by French Space Agency (CNES) 

in collaboration with GMV, focused on the performance 

analysis of different space surveillance networks in the 

detection and cataloguing of a HEO population of objects. 

The use of BAS
3
E is described, including the concatenation 

of computation stages, the databases management and the 

persistence layers. Sensor networks considered within this 

study contain different combinations, in quantity and 

quality, of ground-based telescopes and radars. These sensor 

networks have been selected attending to criteria such as 

viable number of stations for a mid-term deployment and 

quality (measurement noise, observability constraints …) in 

line with already-operating sensors. This study tends to 

evaluate the advantages of fusing data from different 

sources (only optical measurements, or optical 

measurements along with radial distance and/or radial 

velocity data) concerning HEO orbit determination and, 

besides, conclusions are presented on the gain of 

incorporating additional sensors in a hypothetical space 

surveillance system ground network. 

 

Index Terms— Space Situational Awareness , space 

debris, HEO objects, sensor fusion 

 

1. INTRODUCTION 

 

One of the main missions of a Space Surveillance system is 

the detection and cataloguing of space objects having a size 

compatible with the detection constraints of its sensors. 

While radars are used to observe objects placed at Low 

Earth Orbits (LEO), and telescopes to observe objects 

orbiting in Medium (MEO) and Geostationary Orbits 

(GEO),  for objects orbiting in Highly Elliptical Orbits 

(HEO),  both types of sensors are suited for observations. In 

particular, the passage through the perigee can be observed 

from radar stations, while in the high-altitude orbit portion 

telescopes are intended to be the source of observations. In 

this way, combining data derived from different type of 

sensor seems advantageous for tracking HEO objects.  

BAS
3
E (Banc d’Analyse et de Simulation d’un Système 

de Surveillance de l’Espace) is a space surveillance system 

simulation bench that includes the “real world” simulation 

(objects and sensors) and the operational surveillance 

system (e.g. catalogue maintenance, sensor planning, 

collision risk assessment, re-entry prediction and 

fragmentation detection). This tool enables the performance 

analysis of the surveillance network depending on its 

features, as well as the algorithms involved in the catalogue 

maintenance, analysis and planning systems. 

This paper is organized as follows. Section II gives a 

description of the simulator employed within this study. 

Test case scenarios are defined in Section III including the 

objects population and different sensors used. Section IV 

contains the visibility analysis of sensors, both 

independently or joint in surveillance networks. 

Performance on orbit determination is presented in Section 

V along with a comparison between Least square method 

(LSM) and Extended Kalman filter (EKF) results. Finally, 

Section VI is devoted to conclusions and perspectives of 

further work. 

 

2. BAS
3
E  

 

BAS
3
E is a simulation tool conceived and developed for the 

design and analysis of space surveillance systems. This 

concept of space surveillance takes into account, among 

others, the following activities: 

 Detection, tracking and generation of observations 

of space objects, 

 Object identification and tracking correlation, 

 Orbit determination, 

 Maintenance of a space debris catalogue, 

 Collision risk analysis with operational satellites or 

with other space debris, 

 Fragmentation detection, 

 Reentry assessment. 

The first activity mentioned above is performed by a 

physical network of sensors, either on-ground or space-

based, that allows us to obtain observations of different 

kinds, such as angular position, distance or radial velocity. 

The rest of activities correspond to a software system that 

identifies and treats the tracking data coming from the 
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sensors network and compute an orbit of the space object 

more or less accurate in order to perform the relevant 

analysis thereafter. 

From the information technology point of view, 

BAS
3
E is a simulation bench of distributed computation, 

coded in JAVA language and that relies on two main 

libraries, both developed by CNES: 

 PATRIUS: celestial mechanics library 

 ALIS: simulation bench infrastructure: Man-

machine interface (MMI), data persistence 

handling modules (SQL and XML), computation 

executions… 

This JAVA coding enable BAS
3
E to make advantage of a 

set of technologies such as:  

 Eclipse : development infrastructure,  

 Hibernate: SQL database persistence system, 

 XStream: XML files persistence system,  

 OSGI: modularization of applications ,  

 MAVEN: building software procedure and 

dependencies management.  

From a user point of view, BAS
3
E is composed of three 

main products: 

 BAS3E-IHM: with the simulator MMI, preferences 

management, simulation context, 

 BAS3E-RMS: Runtime Machine Service, which is 

the simulator core, simulator execution engine, 

 BAS3E-CRS: Cluster Runtime Service, which is 

the execution client in a cluster computation. It is 

launched automatically by the RMS in the context 

of a stage execution. 

This project structure relies on the BAS3E-COMMON 

project that contains all high-level classes which are specific 

to the simulator, along with simulation objects and stages 

and the computation algorithms. 

In a simulation context, the user shall define a certain 

number of simulation objects and stages. Simulation objects 

refer to common or particular simulation configurations 

such as forces model, atmosphere configuration, filters to 

select objects from the database… Simulation stages usually 

contain the computation interval and a set of simulation 

objects. Simulation stages can be run either on stand-alone 

or on the cluster and they can be concatenated by means of 

the different persistence layer. For example, the propagation 

stage takes the nearest state vector to the computation start 

epoch of the objects (eventually selected by a filter) from 

the objects SQL database. The stage is executed with the 

forces model and integration configuration defined in the 

simulation objects. As an output, this stage will provide 

binary files containing the propagated orbits. This output 

could be used thereafter as an input to the visib ility 

opportunities stage, which, jointly with the sensors SQL 

database (containing sensor measurement types, sensor 

location, visibility constrains, sensor quality…), will 

generate a binary file format containing the periods of time 

where the objects can be observed for a given sensor.  

The simulation of a space surveillance system leads to 

massive number of calculation that could be performed in 

parallel in different cores or machines. From the beginning, 

BAS
3
E has been designed and developed for parallel 

computing in, for instance, a High Performance Computing 

(HPC) service. Results of the present study have been 

obtained by using a CNES own HPC service, which is 

dedicated to scientific projects demanding a great 

computing and processing capacity.  

 

3. TESTS SCENARIOS DEFINITION 

 

The initial population of objects is the 2009 ESA-MASTER 

population database of objects larger than 10 cm in or 

crossing the LEO region. It is composed of 20811 objects, 

from which we have extracted 2139 orbiting in HEO 

applying constrains on the minimum and maximum 

altitudes. In particular, 

 Maximal perigee altitude = 600 km 

 Minimal apogee altitude = 10000 km 

These constraints lead to orbits with an eccentricity higher 

than 0.4. HEO objects can be divided into groups depending 

on the inclination (see Figure 1). A first group appears for 

inclinations lower than 10 deg and it is generally composed 

of rocket stages launched from French Guiana. A second 

group between 20 and 30 deg corresponds to rocket stages 

launched from Cape Canaveral. Similarly, a third group of 

objects around 50 deg that is mainly composed of rocket 

stages launched from Baikonur and, finally, the fourth group 

between 60 and 70 deg with objects that are/have been in a 

Molniya orbit. 

Reference orbits for a 6-days interval are computed 

with a numerical propagator including the following forces: 

 Earth potential up to 12th order and 12th degree. 

 Drag force with MSIS2000 model for atmospheric 

density. 

 Luni-solar perturbations. 

 Solar Radiation Pressure. 

Objects orbiting along these eccentric orbits can be observed 

both by telescopes and radars. Locations for these sensors 

have been chosen attending to criteria such as deployment 

viability and visibility performance (see Table 1). Indeed, 

sites for the telescopes are those of already-operating 

TAROT telescopes [1]. Concerning radars, low latitude 

locations have been favored in order to maximize visibility 

periods around the perigee. Three types of sensors are 

considered, one telescope and two radars (either range radar 

or Doppler radar), whose measurement qualities are defined 

in Table 2 in terms of one parameter, the standard deviation 

of the Gaussian noise.  



 
Figure 1 : Percentage of HEO objects depending on the inclination. 

Histogram refers to the values at the left and the red solid line 

representing the accumulated percentage refers to the values at the 

right. 

 

Telescopes are considered to take measurements every 

30s whereas this time span is reduced to 5s for radars. 

Observations are possible provided that all the visibility 

constraints are fulfilled. For telescopes, we take into 

account: 

 Object elevation : within 0 and 90 deg, 

 Object azimuth : without constraint, 

 Object distance : further than 20000 km, 

 Night: angle between the zenith and the Sun 

between 113 and 180 deg, 

 Illumination: object is illuminated by the Sun. 

Regarding radars: 

 Object elevation : within 0 and 90 deg,  

 Object azimuth : without constraint, 

 Object distance: between 100 and 2000 km. 

 

We consider several on-ground surveillance networks  

with different number of telescopes and radars. The 

composition of each surveillance network is detailed in 

Table 3. Notice that radars will be all considered either 

Range or Doppler ones, so we analyze, in total, 11 

surveillance networks. 

 

4. VISIBILITY ANALYSIS 

 

Once the objects and sensors databases are defined in 

BAS
3
E and reference orbits are computed and stored in 

binary files, we can run the visibility opportunities stage.  

Results from this computation stage are post-processed in 

order to obtain different visibility statistics that enables us to 

compare the surveillance networks in terms of visibility 

performance. We focus the analysis in three aspects: how 

often and how long an object can be seen and how many 

objects are simultaneously in the field-of-view of a sensor. 

 

Type Name Longitude  

(deg) 

Latitude  

(deg) 

Altitude  

(m) 

Telescope TCA 6.924 E 43.752 N 1270.0 
Telescope TCH 70.732 W 29.261 S 2347.0 

Radar Fr. Guiana 52.772 W 5.209 N 0.0 

Radar Reunion 55.456 E 21.328 S 0.0 

Radar Fr. Polynesia 149.416 W 17.768 S 0.0 

Radar Gabon 9.465 E 0.419 N 0.0 

Table 1 : Geodetic position of the surveillance stations 

 

Measurement 
type 

Radar Distance Radar Doppler Telescope 

Angular 10.0 mdeg 10.0 mdeg 3.0 mdeg 

Radial distance 10 m - - 
Radial velocity - 1 m/s - 

Table 2 : Measurement noise applied to each sensor type. 

 

Name Composition 

0T4R Fr. Guiana + Reunion + Fr. Polynesia + Gabon 

2T0R TCA + TCH 
2T1R 2T0R + Fr. Guiana 

2T2R 2T1R + Reunion 

2T3R 2T2R + Fr. Polynesia 

2T4R 2T3R + Gabon 

Table 3 : Surveillance networks composition 

  

4.1. Visibility opportunities 

 

Figure 2 presents the evolution of the visibility opportunities 

per day of the objects population depending on the 

surveillance network. The point at the Y-axis represents the 

percentage of objects that are not accessible for a given 

surveillance network in the 6-days interval. For instance, 

approximately 5% of objects are not observed even with the 

complete network (2T4R). The curves are read as follows. If 

we take the point 20% of objects corresponding to the 

complete network, we obtain roughly 2 visibility 

opportunities per day, that is to say, 20% of the objects can 

be observed by the complete network at least twice per day, 

or, equivalently, 80% of the population can be observed 

more often than twice per day. It is important to note the 

asymptote that reaches  the curve corresponding to the 

complete network at the bottom-left of the figure. This 

means that all the visible objects can potentially be seen at 

least once per day. 

For radars individually, we conclude from our study a 

dependence on the latitude for the percentage of population 

that is accessible. In the case of radars installed near the 

equator (French Guiana and Gabon) around 35% of objects 

do not fulfil the visibility constraints, whereas this 

percentage increases up to 45% for radars in higher latitudes 

(Reunion and French Polynesia). 



 
Figure 2 : Visibility opportunities per day. 

 

Figure 3 : Sensor load of a radar located at French Guiana. 

 
4.2. Visibility duration 

 

The four radars present similar results for the visibility 

duration of an observation. The mode lies within 5 and 7 

minutes. On the other hand, telescopes have much longer 

visibility periods which are enabled by the slower apogee 

passage. The mode for an observation duration stays within  

0.5 and 1.5 hours. 

 

4.3. Sensors load 

 

In this study sensors are considered to be surveillance one. 

No pointing strategy is defined to track the sky. Thus, field-

of-view constraint does not apply in the capability of 

observing an object, and only constraints defined in section 

3 are taken into account. This fact leads to a population of 

simultaneous visible objects  that are far beyond the 

capabilities of actual sensors technologies for taking 

measurements to all of them.  

 

Figure 4 : Sensor load of a radar located at French Polynesia.  

 
Figure 5 : Sensor load of a telescope located at Chile. Histogram 

refers to the values at the left and the red solid line representing the 

accumulated percentage refers to the values at the right. 

 

In that way, results that follow, especially in orbit 

determination performance, should be understood as the 

probability of reaching a certain confidence on the object 

state vector if the given surveillance network tracks 

preferentially this object during six days.  

Sensor load in the case of the four radar locations is 

similar, being between 1 and 4 the number of objects 

accessible to the radar most of the time. Difference between 

radars is again related to the latitude location and it concerns 

the percentage of time that no object is at sight. For radars 

installed near the equator this blinded time represents 

around 5% of total time, whereas this percentage increases 

up to 10% approximately for higher latitude locations (see 

Figure 3 and Figure 4). 

Concerning telescopes load, we can see in Figure 5 the 

case of a telescope located at Chile. Between 200 and 250 

objects are accessible for this telescope and similar figures 



are found for the other location. Obviously, day-night cycle 

plays a major role in the visibility periods and we can notice 

that Chile telescope is blinded 53.4% of the time and France 

telescope, by his side, is blinded 70.4% of the time. These 

percentages are fully justified by the simulation epoch (early 

May) and the latitudes of both locations.  

 

 

5. ORBIT DETERMINATION PERFORMANCES 

 

In this section we present the orbit determination 

performances of the different space surveillance networks in 

terms of the covariance obtained at the end of the estimation 

interval process, that is to say, the covariance associated to 

the final state vector. 

Six days observation data is processed either with a 

batch filter (Least Square Method [2]) or a sequential filter 

(Extended Kalman Filter [2]). 

Forces model used in the orbit determination differs 

from the one used in the reference orbit computation and, 

therefore, from the one used in computing sensor 

observations. This difference, which is reduced to a lower 

accuracy on the earth potential (order and degree 6 instead 

of 12) and the lack of solar radiation pressure modelling, 

simulates somehow the inaccurate knowledge of real forces 

acting on space debris. 

Initial state vector is not perturbed but we consider that 

our knowledge of initial state vector is not perfect through 

an associated initial covariance. 1-sigma values of this 

initial covariance are set to 10, 5 and 5 km in position for 

the three directions of the TNW frame, respectively; and, in 

an analogous way, to 10, 5 and 5 m/s in velocity. 
 

5.1. Least Square Method 

 

We present hereafter results on the final covariance in 

position for the tree directions of the TNW frame. 
 

5.1.1. Along –track direction 

Figure 6 shows the results  of surveillance networks 

containing Doppler radars on the direction parallel to the 

velocity that is usually the direction for which the 

uncertainty is larger. It is worth noting the curves 

corresponding to 0T4R and 2T2R networks since they are 

composed of the same number of sensors. This figure 

indicates that sensor data fusion, coming from optical and 

radar sensors, reduces the uncertainty on the state vector of 

HEO objects more than a network with all observations 

coming from the same type of sensor, Doppler radar in this 

case. The gain is similar to the one obtained when two more 

radars are added to the surveillance network (2T4R case). 

Figure 7 presents the same curves but, this time, 

concerning surveillance networks that contain range radars.  

 

 

Figure 6 : Position covariance in along-track direction at the end of 

the orbit determination time span. The percentage of objects is 

accumulative and only concerns common visible objects for all the 

surveillance networks. Radar stations are Doppler ones. 

 

Figure 7 : Position covariance in along-track direction at the end of 

the orbit determination time span. The percentage of objects is 

accumulative and only concerns common visible objects for all the 

surveillance networks. Radar stations are range ones. 

 

It is important to notice that, when range radars are 

considered, the decrease on the uncertainty of the state 

vector does not always come as a consequence of sensor 

data fusion. On the contrary, 0T4R provides better results 

that 2T2R for the objects whose orbit is more accurately 

known (covariance < 50m). This fact is explained by a 

higher performance of range radars compared to Doppler 

ones in this study, in other words, noise values considered 

for both types of radars do not provide a similar accuracy. 

Indeed, all curves where range radars take part are shifted 

towards the left compared to Doppler ones  (cf. Figures 6 

and 7).  



 
Figure 8 : Position covariance in radial direction at the end of the 

orbit determination time span. Radar stations are Doppler ones. 

 
Figure 9 : Position covariance in radial direction at the end of the 

orbit determination time span. Radar stations are Range ones. 

 

Moreover, as it can be seen in Figure 7, the more accurate 

orbits are obtained thanks to range radar measurements. 

This suggests that, for noise levels considered in our study, 

there is a region with along-track covariance lower than 100 

m in which the accuracy is mainly driven by range 

measurements, and telescopes extra-information does not 

improve more the state vector knowledge. However, sensor 

data fusion provides an improvement on orbital accuracy for 

less accurate orbits. Indeed, the 2T2R surveillance network 

allows reaching almost 100% of the population with along-

track covariance lower than 1km, whereas this percentage 

decreases to 90% for 0T4R. It is worth noting that this 

region stays within telescopes best accuracies obtained, and, 

therefore, we can state that for this test case when accuracies 

of both types of sensor becomes comparable, sensor data 

fusion helps in reducing the uncertainty on the state vector.  

 

Figure 10 : Position covariance in cross-track direction at the end 

of the orbit determination. Radar stations are Doppler ones. 

 
Figure 11 : Position covariance in cross-track direction at the end 

of the orbit determination. Radar stations are Range ones. 

 

5.1.2. Radial and cross-track directions 

Figure 8 presents the position covariance obtained in the 

case of Doppler radars. It is remarkable the increased 

accuracy reached with the 2T2R surveillance network 

compared to the 0T4R. For instance, there are 25% of 

objects with a position covariance smaller than 50m with the 

0T4R network and, for this same value in the covariance, 

the percentage increases up to 85% in the case of 2T2R, 

highlighting the advantages of sensor fusion data. 

For the case of surveillance networks containing range 

radars (see Figure 9), we observe again that the orbits which 

are more accurately estimated (position covariance of the 

order of meters) come mainly from the information provided 

by radar measurements. In a similar way as  in along-track 

direction results, sensor data fusion is advantageous in the 



range of accuracies that are accessible for both telescopes 

and radars. 

Figures 10 and 11 present results in cross -track 

direction. The behavior is similar to the one observed in 

radial direction with both range and Doppler radars . 

 
5.1.3. Covariance representativity 

Taking advantage of having simulated the real world and, in 

consequence, the fact that reference orbits are known, we 

can compute the error in position and in velocity committed 

in the estimated orbits and compare it with the uncertainty 

given by the covariance. In all cases covariance 

underestimates the error committed and therefore the 

achievable orbit determination accuracy inferred by the 

covariance is too optimistic. The reason is that systematic 

errors due to unmodeled forces are not taken into account in 

the covariance matrix computation. The way to overcome 

this discrepancy lies in estimating parameters associated to 

unmodeled or bad-known forces in order to take into 

account these uncertainties in the orbit determination 

process. 
 

5.2. Extended Kalman Filter 

The same orbit determination scenarios have been executed 

with an extended Kalman filter (EKF). This type of filter 

can have numerical difficulties when processing a large 

amount of observations if the covariance matrix and the 

Kalman gain become very small. That situation is 

interpreted by the Kalman filter as a situation in which the 

knowledge on the object trajectory is accurate enough and, 

in consequence, no correction on the state vector is needed 

any more. In other words, last estimation is preponderant 

over any information coming from the sensors. In that way, 

error introduced by a difference in dynamical models, for 

instance, is not corrected and moreover it will increase in 

the propagation. This will lead the problem to get out of the 

linearity region and, therefore, results from EKF can 

diverge. This problematic can be prevented in a simple way 

by adding an additional term in each propagation step to the 

covariance matrix in order to avoid it to become too small. 

This additional term, called process noise term [2], accounts 

for uncertainties caused by systematic forces and 

measurement model errors. In this study, a simplified 

description of the process noise matrix has been used, which 

is defined by one parameter: the process noise associated to 

position errors (Q). A parametric study is carried out in 

order to determine the optimal value of this parameter. 

Figure 12 presents results on the convergence of the EKF 

depending on the value of Q for several surveillance 

networks. A trend is observed in the way of improving the 

convergence with increasing values of Q (as explained 

before) up to a point when this convergence worsens. This 

behavior is explained by the following consideration.  

 
Figure 12 : Percentage of converged object in the orbit 

determination process using EKF depending on the value of the 

process noise parameter. Solid lines correspond to the 2T4R 

surveillance network and dashed line to the 2T2R one. 

 

Process noise term cannot be increased indefinitely. Indeed, 

an upper bound is found when process noise is too large. 

This derives into a situation where last estimation is not 

trusted and sensor information coming from the last 

observation is always considered more important than 

previous one. Information provided by past observations is 

then somehow lost and this leads to a higher sensitivity with 

respect to errors in measurements and therefore larger state 

vector corrections. The problem can then get out of the 

linearity region and diverges. Therefore, attending to Figure 

12 an optimal value of Q around 1m is found for these study 

scenarios. Besides, this value is confirmed if we compare 

state vector errors with the associated covariance. 

Covariance found in the case Q=1m is better in agreement 

with state vector errors than in the other cases. In an 

operational case, where real observation are processed, the 

choice of the process noise parameter is trickier since we do 

not know the error committed; the choice is then based on 

numerical stability of the filter and considerations on the 

order of magnitude of neglected forces. 

A comparison has been made between results obtained 

with LSM and EKF. If process noise is not considered in 

EKF, results from both methods are rather similar, as it can 

be expected. 

 

6. CONCLUS IONS 

 

BAS
3
E is a modular and flexible tool developed by the 

CNES in collaboration with GMV that enables to perform a 

large variety of simulations with the aim of analyzing the 

capabilities and performance of space surveillance systems 

in different scenarios. 

In the study presented in this paper, BAS
3
E is used for 

analyzing the advantages of sensor data fusion in the orbit 

determination of objects orbiting in highly eccentric orbits. 



A visibility analysis is performed for the considered sensors 

(telescopes and radars) individually and grouped into 

networks. Information on the quantity, duration and 

frequency of observations as well as sensor load statistics 

are provided. In addition to this analysis, orbit determination 

performances are analyzed for both a batch and a sequential 

filter, discussing the benefits of space surveillance networks 

composed of different type of sensors, that is to say, the 

sensor data fusion. 
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