OCCAM: Optimal Computation of Collision Avoidance Maneuvers

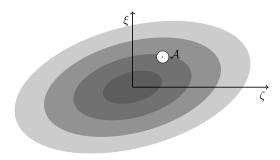
J. Hernando-Ayuso¹, C. Bombardelli² & J. L. Gonzalo²

¹The University of Tokyo, ²Universidad Politécnica de Madrid (UPM) Space Dynamics Group (UPM)

March 15, 2016

- Increasing number of close encounters between active satellites and other bodies
 - 2010: Every week an average 190 conjunctions and 3 collision avoidance maneuvers were reported
 - 2011: Envisat alone reported 4 collision avoidance maneuvers.
- Software tools are needed to plan the execution of these maneuvers in an optimum way and with:
 - Versatility
 - Efficiency
 - Capability to explore a wide parameter space
 - Modularity

- Accurately predict the outcome of a collision avoidance maneuver (CAM)
- Globally optimize the direction of the maneuver Δv for minimum collision probability or maximum miss distance
- Finding the **global** minimum Δv to reduce the collision probability to a given threshold


• A maneuverable satellite S_1 and a non-maneuverable body S_2 experience a close encounter and may collide

- What do we know? (Input)
 - $\blacktriangleright\ S_1$ and S_2 nominal positions and velocities at close encounter
 - S_1 and S_2 covariance matrices at close encounter
 - S_1 and S_2 spherical envelopes
- What do we want to know (Output)
 - Collision probability
 - Best way to reduce it (if critical)

Calculating Collision Probability

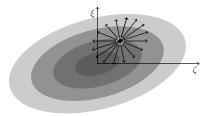
- Short-term encounter scenario
- Encounter plane $(\xi \zeta)$ projection
- 2D integral over combined cross-section area

$$P_{c} = \iint_{\mathcal{A}} f\left(\boldsymbol{r}\right) \mathrm{d}\boldsymbol{r}$$

OCCAM supports six collision probability calculation methods (from the fastest to the slowest method):

- García-Pelayo & Hernando-Ayuso method (JGCD, in press)
- Serra et al. method (JGCD, 2016)
- Ohan's method
- Alfano's method
- Patera's method
- Foster's method

Avoiding the collision


• Suppose the conjunction is critical (e.g. $P_c > 10^{-4}$)

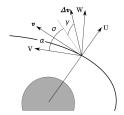
Avoiding the collision

- Suppose the conjunction is critical (e.g. $P_c > 10^{-4}$)
- What is the best way to reduce P_c with limited Δv ?
- When should we maneuver?

Avoiding the collision

- Suppose the conjunction is critical (e.g. $P_c > 10^{-4}$)
- What is the best way to reduce P_c with limited Δv ?
- When should we maneuver?

- Displace the conjunction point away from the high P_c area
- Find the optimum orbital maneuver orientation and timing


Maneuver and conjunction geometry

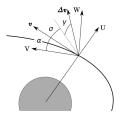
• Impulsive maneuver in UVW (Local Horizontal Local Vertical) $\boldsymbol{\Delta v} = (\Delta v_U, \Delta v_V, \Delta v_W)^{\top}$

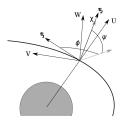
$$\Delta v_U = \Delta v \cos \gamma \sin (\sigma + \alpha),$$

$$\Delta v_V = \Delta v \cos \gamma \cos (\sigma + \alpha),$$

$$\Delta v_W = \Delta v \sin \gamma.$$

Maneuver and conjunction geometry


• Impulsive maneuver in UVW (Local Horizontal Local Vertical) $\boldsymbol{\Delta v} = (\Delta v_U, \Delta v_V, \Delta v_W)^{\top}$


$$\Delta v_U = \Delta v \cos \gamma \sin (\sigma + \alpha),$$

$$\Delta v_V = \Delta v \cos \gamma \cos (\sigma + \alpha),$$

$$\Delta v_W = \Delta v \sin \gamma.$$

- v_2 is related to v_1 by:
 - \blacktriangleright a S_1 in-plane rotation ϕ
 - \blacktriangleright a S_1 out–of-plane rotation ψ
 - a scaling $\chi = v_2/v_1$

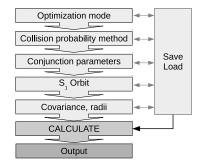
Linear impulsive maneuver approximation:

$$\boldsymbol{r} \simeq \boldsymbol{r_e} + M \boldsymbol{\Delta v}, \quad M = R \, K \, D$$

- R: Rotation matrix
- K: Kinematics matrix
- D: Dynamics matrix (error state transition matrix)

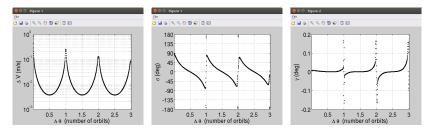
M is a function of ϕ , ψ , χ , e_0 , $heta_c$, $heta_m$ and $\sqrt{rac{a_0^3}{\mu}}$

- e_0 eccentricity of unperturbed orbit of S_1
- a_0 semimajor axis of unperturbed orbit of S_1
- θ_c , θ_m true anomaly of S_1 at conjunction and maneuver Maneuver anticipation angle: $\Delta \theta = \theta_c - \theta_m$


Maneuver Optimization

- In general: non-linear, non-convex optimization problem
- Computationally heavy
- To solve it, two relaxations are introduced:
 - 1 Linear dynamics $m{r} = m{r}_{m{e}} + M m{\Delta} m{v}$
 - 2 Constant P_c when r lays on a constant pdf ellipse. Good approximation if the bodies are large with respect to the uncertainty
- The problem is transfomed into a Quadratically Constrained Quadratic Program equivalent to a convex problem
- Finally reduced to an eigenvalue and eigenvector problem + 1D non-linear equation
- Extremely fast

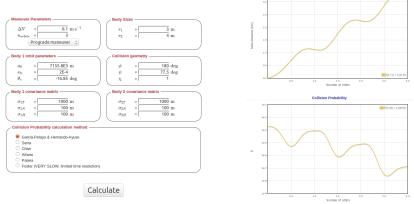
OCCAM (Input)


😑 🗇 оссам		
FDe		
Data Maneuver (# Maximum miss distanc () Minimum Collision prof () Minimum ΔV		
Prefer prograde	n orbits: 3	
Collision probability Method:	Garcia-Pelayo & Hernando-Ayuso *	Results
Conjunction	Covariance matrix - body 1 (m ¹) U V W	Plot miss distance
(deg): 180	U 1E2 0 0	Plot Depth of Intrusion
@ (deg) 77.5	V 0 186 0	
1: 1 6.0 (m);70	W 0 0 1E2	Plot Probability
ζ.0 (m): -70	Body 1 radius (m): 3	Plot ΔV
Body 1 orbit parameters	Covariance matrix - body 2 (m ¹)	
a_0 (m) 7155.883	U 1E2 0 0	Plot y
e_0: 22-4	V 0 106 0 W 0 0 162	Plot b-plane
0.c (deg) -16.85		Vinclude Error ellipsoid
	Body 2 radius (m): 4	P: 12-10
CALCULATE		Close all windows

OCCAM user interface

OCCAM input diagram flow

OCCAM (Ouput)


required Δv

In-plane maneuver orientation angle

Out-of-plane maneuver orientation angle

OCCAM lite (Try it online!)

Reduced number of features Online web-app

Miss distance (km)

http://sdg.aero.upm.es/index.php/online-apps/occam-lite

(or Google: "OCCAM lite")

OCCAM

- OCCAM was developed at the Space Dynamics Group (UPM)
- Submitted to the Copyright Registry Office of Madrid and presented at UPM Innovatech 2014 (technology commercialization seminar)
- OCCAM allows satellite operators to rapidly analyze a wide range of possible strategies
- Its graphical user interface makes it easy to learn and use, while retaining a high design flexibility
- It can be used as a standalone tool, or in conjunction with other satellite operation planning frameworks
- A customized integral service could be offered to each partner

Thank you

Questions?