A fast and efficient algorithm for onboard LEO intermediary propagation

Denis Hautesserres‡ and Martin Lara†

(‡) Centres de Competence Tech., CNES, Toulouse, France
(†) Space Dynamics Group, UPM, Madrid, Spain & GRUCACI – Univ. La Rioja, Logroño, Spain

6th Int. Conf. on Astrodynamics Tools and Techniques
Session: Loitering / Orbiting
Darmstadt, Germany, March 13 – 18, 2016

Background: Onboard propagation

- Common onboard orbit propagators
 - provide satellite navigation solution for short time spans
 - for instance: in case of GPS outage (minutes . . .)
- Accumulation of high-order effects is insignificant
 - main perturbation affecting operational LEO sats. is J_2
 - motion in this potential field known as main problem
- Hardware and software improvements:
 - numerical solution very fast and accurate
- Analytical approach: no need of integrating ODEs
 - “instant” but approximate solution
- Main problem is non-integrable \rightarrow intermediaries
• Intermediaries: **integrable** problems
 – comprise the bulk of the original main problem dynamics
 – solution limited in precision to 1st order effects of J_2
 * 7-8 meters in the ii.cc. of LEO
 – intermediary competitive vs. Runge-Kutta integration
• Intermediary approach: no need of integration ODEs
 – less power consumption
 * important if power constraints, like Cubesats
 – more versatile: no need of step by step evaluation
 – less precise, but shares the same statistics as R-K
 * ii.cc. are known onboard within some uncertainty
Outline

• Perturbed Keplerian motion: Geopotential
• Main problem Hamiltonian
 – truncations in polar-nodal variables
 – radial and zonal intermediaries (common and natural)
• Deprit’s radial, natural intermediary
 – 2nd order improvements
 – J_3 and J_4 effects
• Examples and comparisons
• Conclusions and future work
Perturbed Keplerian motion

- \(V = -(\mu/r) [1 + \epsilon D(r, \dot{r}, t)] \), \(\epsilon \ll 1 \), \(\mu = GM_\oplus \)
 - the disturbing function \(D \) usually makes \(V \) non-integrable
 - expected solution: slightly distorted Keplerian orbit

- Geopotential: usual expansion in spherical harmonics
 - Earth case: \(J_2 = -C_{2,0} = O(10^{-3}) \), \(C_{n,m} = O(J_2^2) \)

- Main problem: \(V = -(\mu/r) \left[1 - J_2 \left(\frac{R_\oplus}{r} \right)^2 P_{2,0}(\sin \phi) \right] \)
 - quite representative of the real dynamics, non-integrable
 - averaged dynamics: secular effects
 * precess. ellipse, regression/advance of the perigee
 * also, modification of the mean motion
 - non-integrable: solution by numerical integration
 - alternative: approximate analytical intermediary solutions
Truncations of the main problem

- Hamiltonian formalism (≈ energy, canonical variables)
 - state scalar function from which we derive the e.o.m.
 - polar variables \(r, \theta, \nu, R = \dot{r}, \Theta = r^2 \dot{\theta}, N = \Theta \cos i \)
- Expand the Legendre polynomial: \(\sin \varphi = \sin i \sin \theta \)

\[
\mathcal{H} = \frac{1}{2}(R^2 + \Theta^2/r^2) - \frac{\mu}{r} - \frac{1}{2}(\mu/r)(R_{\oplus}/r)^2 J_2 \quad \text{Kepler}
\]

\[
+ \frac{3}{4}(\mu/r)(R_{\oplus}/r)^2 J_2 \sin^2 I \quad \text{Main equatorial}
\]

\[
- \frac{3}{4}(\mu/r)(R_{\oplus}/r)^2 J_2 \sin^2 I \cos 2\theta \quad \text{Cid intermediary}
\]

\[
\text{Full problem}
\]

- Radial Hamiltonians: \((r, \theta, \nu, R, \Theta, N) \rightarrow (r, -, -, R, \Theta, N) \)
 - \(\mathcal{H}(r, R; \Theta, N) \) 1-DOF \(\Rightarrow \) integrable

- 3 different intermediaries of the main problem
• Good and bad radial intermediaries (classical definition)
 - Keplerian: \(\mathcal{K} = \frac{1}{2} \left(R^2 + \frac{\Theta^2}{r^2} \right) - \frac{\mu}{r} \), \(\frac{1}{2\pi} \int_0^{2\pi} (\mathcal{H} - \mathcal{K}) dM \neq 0 \)
 - Equatorial main problem \(\mathcal{E} = \mathcal{K} + \mathcal{P}_Q \)
 \[\mathcal{E} = \mathcal{K} - \frac{\mu}{2r} \frac{R_\oplus^2}{r^2} J_2 \]
 \[\frac{1}{2\pi} \int_0^{2\pi} (\mathcal{H} - \mathcal{E}) dM \neq 0 \]
 - Cid-Lahulla intermediary \(\mathcal{C} = \mathcal{K} + \mathcal{P}_Q + \mathcal{P}_R \),
 \[\mathcal{C} = \mathcal{K} - \frac{\mu}{2r} \frac{R_\oplus^2}{r^2} J_2 \left(1 - \frac{3}{2}\sin^2 I \right) \]
 \[\frac{1}{2\pi} \int_0^{2\pi} (\mathcal{H} - \mathcal{C}) dM = 0 \]

• Cid-Lahulla: paradigm of common intermediaries
 - \(\langle \mathcal{C} \rangle \equiv \langle \mathcal{H} \rangle \) same secular rates as the main problem
 - actual orbit: short-period oscillations about Cid’s orbit
 * except for effects of the 2nd order of \(J_2 \)
 - analytical solution in elliptic integrals
Zonal intermediaries

- Add & subtract A to the main problem \mathcal{H}
 - reorganize: $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$ \quad ($s \equiv \sin I, \ c \equiv \cos I$)

$$\begin{align*}
\mathcal{H}_0 &= \frac{1}{2} \left(R^2 + \frac{\Theta^2}{r^2} \right) - \frac{\mu}{r} - \frac{\mu}{2p} \frac{R_\oplus^2}{r^2} J_2 \left(1 - \frac{3}{2}s^2 + \frac{3}{2}s^2 \cos 2\theta \right) \\
\mathcal{H}_1 &= -\frac{\mu}{2p} \left(\frac{p}{r} - 1 \right) \frac{R_\oplus^2}{r^2} J_2 \left(1 - \frac{3}{2}s^2 + \frac{3}{2}s^2 \cos 2\theta \right); \quad \frac{p}{r} - 1 = e \cos f
\end{align*}$$

- \mathcal{H}_0 integrable (elliptic integrals); $\langle \mathcal{H}_1 \rangle = 0$
 * (Aksnes 1965, Astrophisica Norvegica)
- low e: $e \sim \mathcal{O}(J_2) \Rightarrow \mathcal{H}_1 = \mathcal{O}(J_2^2)$

- Vinti 1959 JR-NBS, Aksenov et al. 1961 P&SS:
 - accurate up to (some) 2nd order effects of J_2
Natural intermediaries

- Integrable after a contact transform. (Deprit 1981 CeMDA)
 \[(r, \theta, \nu, R, \Theta, N) \rightarrow (r', \theta', \nu', R', \Theta', N') \]
- Accurate up to \(O(J_2) \) secular and periodic effects

- Most of the common intermediaries can be naturalized
 - Cid-Lahulla, Aksnes, . . . : solution in elliptic integrals

- Deprit’s radial intermediary:
 \[
 H = \frac{1}{2} \left(R'^2 + \frac{\Theta'^2}{r'^2} \right) - \frac{\mu}{r'}, \quad \Theta' = \Theta' \sqrt{1 + J_2 \frac{R^2}{p'^2} \left(\frac{1}{2} - \frac{3}{2} c'^2 \right)}
 \]
 - Quasi-Keplerian system with variable angular momentum
 - Solution in trigonometric functions
 - Very simple periodic corrections
\[
\xi - \xi' = -(1/2)J_2 (R_\oplus/p)^2 \Delta \xi, \quad \xi \in (r, \theta, \nu, R, \Theta, N),
\]
\[
\Delta N = 0
\]
\[
\Delta r = (1/2)p \left(1 - 3s^2 - s^2 \cos 2\theta \right)
\]
\[
\Delta \theta = \left(pR/\Theta \right) \left[1 - 6c^2 + (1 - 2c^2) \cos 2\theta \right]
+ (1/4) \left[3 - 5c^2 - 4(1 - 3c^2)(p/r) \right] \sin 2\theta
\]
\[
\Delta \nu = (1/2) c \left[(pR/\Theta)(6 + 2 \cos 2\theta) + (1 - 4p/r) \sin 2\theta \right]
\]
\[
\Delta R = \left(p\Theta/r^2 \right) s^2 \sin 2\theta
\]
\[
\Delta \Theta = (1/2) \Theta s^2 \left[(1 - 4p/r) \cos 2\theta - (pR/\Theta) \sin 2\theta \right]
\]
DRI: 2nd order improvements

• 2nd order transform. \((r, \theta, \nu, R, \Theta, N) \rightarrow (r', \theta', \nu', R', \Theta', N')\)
 – computed by “elimination of the parallax”

• New Hamiltonian term
 \[- H_{0,2} = \frac{1}{4} J_2^2 \frac{\Theta^2}{r^2} \left(\Phi_1 + \frac{J_3}{J_2^2} \Phi_2 + \frac{J_4}{J_2^2} \Phi_3 \right) \]
 – \(\Phi_m = \Phi_m(p, e, i, \omega)\)
 – \(p = p(\Theta), e \equiv e(r, -, R, \Theta), i \equiv i(\Theta, N), \omega \equiv \omega(r, \theta, R, \Theta)\)

• No longer integrable, but \(H_{0,2} = \Psi(r, -, R, \Theta) + O(eJ_2^2)\)

• \(e\) small: \(H_{0,2} \approx \Psi(r, -, R, \Theta)\)
 – again radial (integrable) and quasi-Keplerian!!
 – limited to low \(e\) . . . most common case in LEO
 – new periodic corrections more involved, yet manageable
LEO Performance: examples

• Spot-type satellite:
 – $a = 7081.139$ km, $e = 0.0158$, $i = 98^\circ$,
 – $\Omega = 164.02^\circ$, $\omega = M = 0$

• Test cases for one day:
 – Numerical integration of the J_2–J_4 problem
 – Numerical integration of the J_2 (main) problem
 – Quasi-Keplerian intermediary in mean elements $+$. . .
 * full 2nd order inverse & direct transformation eqs.
 * simplified, 2nd order inverse $+$ 1st order direct eqs.
- $J_2 - J_4$ model vs.: J_2-numerical and intermediary (full)
- $J_2 - J_4$ vs. J_2 numeric & intermediary (simp.): 3 times faster
J_3 long-period effects

- Clearly noted since the beginning of the propagation
 - perigee dynamics, e, i dynamics
 - intermediary only deals with J_3 short-period effects
- New canonical transformation contrary to truncation
 - Alfriend & Coffey’s *elimination of the perigee* (1984)
 - extremely simple formulas for the case of LEO
- Sequence:
 - short-period inverse corrections (J_2, J_2^2, J_3, J_4)
 - long-period inverse corrections (J_3)
 - quasi-Keplerian intermediary evaluation (J_2, J_2^2 and J_4)
 - long-period direct corrections (J_3)
 - short-period inverse corrections (J_2)
• **without** long-period corrections

![Graphs showing deviations in
\(\Delta e \sin \omega \) and
\(\Delta e \cos \omega \) without corrections.]

• **with** \(J_3 \) long-period corrections: observable improvements

![Graphs showing deviations in
\(\Delta e \sin \omega \) and
\(\Delta e \cos \omega \) with corrections.]

<table>
<thead>
<tr>
<th>Days</th>
<th>0.0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta e \sin \omega)</td>
<td>-6.0 \times 10^{-6}</td>
<td>-4.0 \times 10^{-6}</td>
<td>-2.0 \times 10^{-6}</td>
<td>0</td>
<td>2.0 \times 10^{-6}</td>
<td>4.0 \times 10^{-6}</td>
</tr>
<tr>
<td>(\Delta e \cos \omega)</td>
<td>0.00005</td>
<td>0.00003</td>
<td>0.00001</td>
<td>0</td>
<td>0.00003</td>
<td>0.00005</td>
</tr>
<tr>
<td>(\Delta \theta) (arc seconds)</td>
<td>-0.05</td>
<td>-0.02</td>
<td>0</td>
<td>0.02</td>
<td>0.05</td>
<td>0.08</td>
</tr>
</tbody>
</table>

9-1
• 4 months **without** long-period corrections

• 4 months **with** \(J_3 \) long-period corrections
Conclusions

- Higher order geopotential: improves propagation of LEOs
 - penalizes Cowell integration in terms of computing time
- Increase in computational burden \rightarrow power consumption
 - can be radically alleviated for the lower eccentricity orbits
 - intermediary solution, within a reasonable accuracy.
 * neglect terms $O(e^2J_2^2)$ of the perigee dynamics
- Our intermediary: higher order secular and periodic effects
 - compact form of straightforward evaluation (polar vars.)
 - useful for onboard orbit propagation: restricted power
- Future improvements and work
 - include atmospheric drag effects
 - try other intermediaries: Aksnes, Vinti, 2 fixed centers