A fast and efficient algorithm for onboard LEO intermediary propagation*

Denis Hautesserres[‡] and Martin Lara[†]

(‡) Centres de Competence Tech., CNES, Toulouse, France

(†) Space Dynamics Group, UPM, Madrid, Spain & GRUCACI – Univ. La Rioja, Logroño, Spain

6th Int. Conf. on Astrodynamics Tools and Techniques Session: Loitering / Orbiting Darmstadt, Germany, March 13 – 18, 2016

*Support: Projects ESP2013-41634-P & 2014-57071-R, Gov. of Spain

Background: Onboard propagation

- Common onboard orbit propagators
 - provide satellite navigation solution for short time spans
 - for instance: in case of GPS outage (minutes ...)
- Accumulation of high-order effects is insignificant
 - main perturbation affecting operational LEO sats. is J_2
 - motion in this potential field known as *main problem*
- Hardware and software improvements:
 - numerical solution very fast and accurate
- Analytical approach: no need of integrating ODEs
 - "instant" but approximate solution
- Main problem is non-integrable \longrightarrow intermediaries

- Intermediaries: integrable problems
 - comprise the bulk of the original main problem dynamics
 - solution limited in precision to 1st order effects of ${\it J}_2$
 - \ast 7-8 meters in the ii.cc. of LEO
 - intermediary competitive vs. Runge-Kutta integration
 - * Gurfil and Lara, Celest. Mech. Dyn. Astr. 2014
- Intermediary approach: no need of integration ODEs
 - less power consumption
 - * important if power constraints, like Cubesats
 - more versatile: no need of step by step evaluation
 - less precise, but shares the same statistics as R-K
 - * ii.cc. are known onboard within some uncertainty

Outline

- Perturbed Keplerian motion: Geopotential
- Main problem Hamiltonian
 - truncations in polar-nodal variables
 - radial and zonal intermediaries (common and natural)
- Deprit's radial, natural intermediary
 - 2nd order improvements
 - J_3 and J_4 effects
- Examples and comparisons
- Conclusions and future work

Perturbed Keplerian motion

- $V = -(\mu/r) \left[1 + \epsilon D(r, \dot{r}, t)\right], \ \epsilon \ll 1, \ \mu = GM_{\oplus}$
 - the disturbing function D usually makes V non-integrable
 - expected solution: slightly distorted Keplerian orbit
- Geopotential: usual expansion in spherical harmonics
 - Earth case: $J_2 = -C_{2,0} = \mathcal{O}(10^{-3}), C_{n,m} = \mathcal{O}(J_2^2)$
- Main problem: $V = -(\mu/r) \left[1 J_2 \left(R_{\oplus}/r \right)^2 P_{2,0}(\sin \varphi) \right]$
 - quite representative of the real dynamics, non-integrable
 - averaged dynamics: secular efects
 - * precess. ellipse, regression/advance of the perigee
 - * also, modification of the mean motion
 - non-integrable: solution by numerical integration
 - alternative: approximate analytical intermediary solutions

Truncations of the main problem

- Hamiltonian formalism (\sim energy, canonical variables)
 - state scalar function from which we derive the e.o.m.
 - polar variables $(r, \theta, \nu, R = \dot{r}, \Theta = r^2 \dot{\theta}, N = \Theta \cos i)$
- Expand the Legendre polynomial: $\sin \varphi = \sin i \sin \theta$
 - $\begin{aligned} \mathcal{H} &= (1/2)(R^2 + \Theta^2/r^2) \mu/r & \text{Kepler} \\ &- (1/2)(\mu/r) \left(R_{\oplus}/r\right)^2 J_2 & \text{Main equatorial} \\ &+ (3/4)(\mu/r) \left(R_{\oplus}/r\right)^2 J_2 \sin^2 I & \text{Cid intermediary} \\ &- (3/4)(\mu/r) \left(R_{\oplus}/r\right)^2 J_2 \sin^2 I \cos 2\theta & \text{Full problem} \end{aligned}$
- Radial Hamiltonians: $(r, \theta, \nu, R, \Theta, N) \longrightarrow (r, -, -, R, \Theta, N)$ - $\mathcal{H}(r, R; \Theta, N)$ 1-DOF \Rightarrow integrable
- 3 different intermediaries of the main problem

- Good and bad radial intermediaries (classical definition)
 - Keplerian: $\mathcal{K} = \frac{1}{2} \left(R^2 + \frac{\Theta^2}{r^2} \right) \frac{\mu}{r}, \qquad \frac{1}{2\pi} \int_0^{2\pi} (\mathcal{H} \mathcal{K}) dM \neq 0$
 - Equatorial main problem $\mathcal{E} = \mathcal{K} + \mathcal{P}_Q$ $\mathcal{E} = \mathcal{K} - \frac{\mu}{2r} \frac{R_{\oplus}^2}{r^2} J_2 \qquad \qquad \frac{1}{2\pi} \int_0^{2\pi} (\mathcal{H} - \mathcal{E}) dM \neq 0$
 - Cid-Lahulla intermediary $C = \mathcal{K} + \mathcal{P}_Q + \mathcal{P}_R$, $C = \mathcal{K} - \frac{\mu}{2r} \frac{R_{\oplus}^2}{r^2} J_2 \left(1 - \frac{3}{2} \sin^2 I\right) \qquad \frac{1}{2\pi} \int_0^{2\pi} (\mathcal{H} - C) dM = 0$
- Cid-Lahulla: paradigm of *common* intermediaries
 - $\langle \mathcal{C} \rangle \equiv \langle \mathcal{H} \rangle$ same secular rates as the main problem
 - actual orbit: short-period oscillations about Cid's orbit
 - \ast except for effects of the 2nd order of J_2
 - analytical solution in elliptic integrals

Zonal intermediaries

• Add & subtract \mathcal{A} to the main problem \mathcal{H} - reorganize: $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}_1$ $(s \equiv \sin I, c \equiv \cos I)$

$$\mathcal{H}_{0} = \frac{1}{2} \left(R^{2} + \frac{\Theta^{2}}{r^{2}} \right) - \frac{\mu}{r} - \frac{\mu}{2p} \frac{R_{\oplus}^{2}}{r^{2}} J_{2} \left(1 - \frac{3}{2}s^{2} + \frac{3}{2}s^{2}\cos 2\theta \right)$$

$$\mathcal{H}_{1} = -\frac{\mu}{2p} \left(\frac{p}{r} - 1 \right) \frac{R_{\oplus}^{2}}{r^{2}} J_{2} \left(1 - \frac{3}{2}s^{2} + \frac{3}{2}s^{2}\cos 2\theta \right); \quad \frac{p}{r} - 1 = e\cos f$$

- \mathcal{H}_0 integrable (elliptic integrals); $\langle \mathcal{H}_1 \rangle = 0$

* (Aksnes 1965, Astrophisica Norvegica)

- low e: $e \sim \mathcal{O}(J_2) \Rightarrow \mathcal{H}_1 = \mathcal{O}(J_2^2)$

- Sterne 1957 AJ, Garfinkel 1958 AJ, ..., Oberti 2005 A&A
- Vinti 1959 JR-NBS, Aksenov et al. 1961 P&SS:

- accurate up to (some) 2nd order effects of J_2

Natural intermediaries

• Integrable after a contact transform. (Deprit 1981 CeMDA)

 $- (r, \theta, \nu, R, \Theta, N) \longrightarrow (r', \theta', \nu', R', \Theta', N')$

- accurate up to $\mathcal{O}(J_2)$ secular and periodic effects
- Most of the *common* intermediaries can be naturalized
 Cid-Lahulla, Aksnes, ...: solution in elliptic integrals
- Deprit's radial intermediary:

$$\mathcal{H} = \frac{1}{2} \left(R'^2 + \frac{\tilde{\Theta}^2}{r'^2} \right) - \frac{\mu}{r'}, \qquad \tilde{\Theta} = \Theta' \sqrt{1 + J_2 \frac{R_{\oplus}^2}{p'^2} \left(\frac{1}{2} - \frac{3}{2} c'^2 \right)}$$

- quasi-Keplerian system with variable angular momentum
- solution in trigonometric functions
- very simple periodic corrections

$$\begin{aligned} \xi - \xi' &= -(1/2)J_2 (R_{\oplus}/p)^2 \Delta \xi, \qquad \xi \in (r, \theta, \nu, R, \Theta, N), \\ \Delta N &= 0 \\ \Delta r &= (1/2)p \left(1 - 3s^2 - s^2 \cos 2\theta \right) \\ \Delta \theta &= (pR/\Theta) \left[1 - 6c^2 + (1 - 2c^2) \cos 2\theta \right] \\ &+ (1/4) \left[3 - 5c^2 - 4(1 - 3c^2)(p/r) \right] \sin 2\theta \\ \Delta \nu &= (1/2) c \left[(pR/\Theta)(6 + 2\cos 2\theta) + (1 - 4p/r) \sin 2\theta \right] \\ \Delta R &= (p \Theta/r^2) s^2 \sin 2\theta \\ \Delta \Theta &= (1/2) \Theta s^2 \left[(1 - 4p/r) \cos 2\theta - (p R/\Theta) \sin 2\theta \right] \end{aligned}$$

6-1

DRI: 2nd order improvements

• 2nd order transform. $(r, \theta, \nu, R, \Theta, N) \longrightarrow (r', \theta', \nu', R', \Theta', N')$

- computed by "elimination of the parallax"

• New Hamiltonian term

$$-H_{0,2} = \frac{1}{4}J_2^2 \frac{\Theta^2}{r^2} \left(\Phi_1 + \frac{J_3}{J_2^2} \Phi_2 + \frac{J_4}{J_2^2} \Phi_3 \right)$$

$$-\Phi_m = \Phi_m(p, e, i, \omega)$$

$$-p = p(\Theta), \ e \equiv e(r, -, R, \Theta), \ i \equiv i(\Theta, N), \ \omega \equiv \omega(r, \theta, R, \Theta)$$

- No longer integrable, but $H_{0,2} = \Psi(r, -, R, \Theta) + \mathcal{O}(eJ_2^2)$
- e small: $H_{0,2} \approx \Psi(r, -, R, \Theta)$
 - again radial (integrable) and quasi-Keplerian!!
 - limited to low $e\,\ldots\,{\rm most}$ common case in LEO
 - new periodic corrections more involved, yet manageable

LEO Performance: examples

- Spot-type satellite:
 - $-a = 7081.139 \text{ km}, e = 0.0158, i = 98^{\circ},$
 - $-\Omega = 164.02^{\circ}, \ \omega = M = 0$
- Test cases for **one day**:
 - Numerical integration of the J_2 - J_4 problem
 - Numerical integration of the J_2 (main) problem
 - Quasi-Keplerian intermediary in mean elements + ...
 - * full 2nd order inverse & direct transformation eqs.
 - * simplified, 2nd order inverse + 1st order direct eqs.

• J_2-J_4 model vs.: J_2 -numerical and intermediary (full)

8-1

• J_2-J_4 vs. J_2 numeric & intermediary (simp.): 3 times faster

8-2

J_3 long-period effects

- Clearly noted since the beginning of the propagation
 - perigee dynamics, e, i dynamics
 - intermediary only deals with J_3 short-period effects
- New canonical transformation contrary to truncation
 - Alfriend & Coffey's elimination of the perigee (1984)
 - extremely simple formulas for the case of LEO
- Sequence:
 - short-period inverse corrections (J_2, J_2^2, J_3, J_4)
 - long-period inverse corrections (J_3)
 - quasi-Keplerian intermediary evaluation $(J_2, J_2^2 \text{ and } J_4)$
 - long-period direct corrections (J_3)
 - short-period inverse corrections (J_2)

• with J_3 long-period corrections: observable improvements

• 4 months with J_3 long-period corrections

9-2

Conclusions

- Higher order geopotential: improves propagation of LEOs
 - penalizes Cowell integration in terms of computing time
- Increase in computational burden \longrightarrow power consumption
 - can be radically alleviated for the lower eccentricity orbits
 - *intermediary* solution, within a reasonable accuracy.
 - * neglect terms $\mathcal{O}(e^2 J_2^2)$ of the perigee dynamics
- Our intermediary: higher order secular and periodic effects
 - compact form of straightforward evaluation (polar vars.)
 - useful for onboard orbit propagation: restricted power
- Future improvements and work
 - include atmospheric drag effects
 - try other intermediaries: Aksnes, Vinti, 2 fixed centers