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Background: Onboard propagation

• Common onboard orbit propagators

– provide satellite navigation solution for short time spans

– for instance: in case of GPS outage (minutes . . . )

• Accumulation of high-order effects is insignificant

– main perturbation affecting operational LEO sats. is J2

– motion in this potential field known as main problem

• Hardware and software improvements:

– numerical solution very fast and accurate

• Analytical approach: no need of integrating ODEs

– “instant” but approximate solution

• Main problem is non-integrable −→ intermediaries
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• Intermediaries: integrable problems

– comprise the bulk of the original main problem dynamics

– solution limited in precision to 1st order effects of J2

∗ 7-8 meters in the ii.cc. of LEO

– intermediary competitive vs. Runge-Kutta integration

∗ Gurfil and Lara, Celest. Mech. Dyn. Astr. 2014

• Intermediary approach: no need of integration ODEs

– less power consumption

∗ important if power constraints, like Cubesats

– more versatile: no need of step by step evaluation

– less precise, but shares the same statistics as R-K

∗ ii.cc. are known onboard within some uncertainty
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Outline

• Perturbed Keplerian motion: Geopotential

• Main problem Hamiltonian

– truncations in polar-nodal variables

– radial and zonal intermediaries (common and natural)

• Deprit’s radial, natural intermediary

– 2nd order improvements

– J3 and J4 effects

• Examples and comparisons

• Conclusions and future work
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Perturbed Keplerian motion

• V = −(µ/r) [1 + εD(r, ṙ, t)], ε� 1, µ = GM⊕
– the disturbing function D usually makes V non-integrable

– expected solution: slightly distorted Keplerian orbit

• Geopotential: usual expansion in spherical harmonics

– Earth case: J2 = −C2,0 = O(10−3), Cn,m = O(J2
2)

• Main problem: V = −(µ/r)
[
1− J2 (R⊕/r)

2 P2,0(sinϕ)
]

– quite representative of the real dynamics, non-integrable

– averaged dynamics: secular efects

∗ precess. ellipse, regression/advance of the perigee

∗ also, modification of the mean motion

– non-integrable: solution by numerical integration

– alternative: approximate analytical intermediary solutions
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Truncations of the main problem

• Hamiltonian formalism (∼ energy, canonical variables)

– state scalar function from which we derive the e.o.m.

– polar variables (r, θ, ν, R = ṙ,Θ = r2θ̇, N = Θ cos i)

• Expand the Legendre polynomial: sinϕ = sin i sin θ

H = (1/2)(R2 + Θ2/r2)− µ/r Kepler

−(1/2)(µ/r) (R⊕/r)
2 J2 Main equatorial

+(3/4)(µ/r) (R⊕/r)
2 J2 sin2 I Cid intermediary

−(3/4)(µ/r) (R⊕/r)
2 J2 sin2 I cos 2θ Full problem

• Radial Hamiltonians: (r, θ, ν, R,Θ, N) −→ (r,−,−, R,Θ, N)

– H(r,R; Θ, N) 1-DOF ⇒ integrable

• 3 different intermediaries of the main problem
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• Good and bad radial intermediaries (classical definition)

– Keplerian: K = 1
2

(
R2 + Θ2

r2

)
− µ

r , 1
2π

∫ 2π
0 (H−K)dM 6= 0

– Equatorial main problem E = K+ PQ
E = K− µ

2r
R2
⊕
r2 J2

1
2π

∫ 2π
0 (H− E)dM 6= 0

– Cid-Lahulla intermediary C = K+ PQ + PR,

C = K−
µ

2r

R2
⊕
r2

J2

(
1−

3

2
sin2 I

)
1

2π

∫ 2π

0
(H− C)dM= 0

• Cid-Lahulla: paradigm of common intermediaries

– 〈C〉 ≡ 〈H〉 same secular rates as the main problem

– actual orbit: short-period oscillations about Cid’s orbit

∗ except for effects of the 2nd order of J2

– analytical solution in elliptic integrals
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Zonal intermediaries

• Add & subtract A to the main problem H
– reorganize: H = H0 +H1 (s ≡ sin I, c ≡ cos I)

H0 =
1

2

(
R2 +

Θ2

r2

)
−
µ

r
−
µ

2p

R2
⊕
r2

J2

(
1−

3

2
s2 +

3

2
s2 cos 2θ

)

H1 = −
µ

2p

(
p

r
−1

)
R2
⊕
r2

J2

(
1−

3

2
s2 +

3

2
s2 cos 2θ

)
;

p

r
− 1 = e cos f

– H0 integrable (elliptic integrals); 〈H1〉 = 0

∗ (Aksnes 1965, Astrophisica Norvegica)

– low e: e ∼ O(J2) ⇒ H1 = O(J2
2)

• Sterne 1957 AJ, Garfinkel 1958 AJ, . . . , Oberti 2005 A&A

• Vinti 1959 JR-NBS, Aksenov et al. 1961 P&SS:

– accurate up to (some) 2nd order effects of J2
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Natural intermediaries

• Integrable after a contact transform. (Deprit 1981 CeMDA)

– (r, θ, ν, R,Θ, N) −→ (r′, θ′, ν′, R′,Θ′, N ′)

– accurate up to O(J2) secular and periodic effects

• Most of the common intermediaries can be naturalized

– Cid-Lahulla, Aksnes, . . . : solution in elliptic integrals

• Deprit’s radial intermediary:

H =
1

2

(
R′2 +

Θ̃2

r′2

)
−
µ

r′
, Θ̃ = Θ′

√√√√1 + J2
R2
⊕

p′2

(
1

2
−

3

2
c′2
)

– quasi-Keplerian system with variable angular momentum

– solution in trigonometric functions

– very simple periodic corrections
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ξ − ξ′ = −(1/2)J2 (R⊕/p)2 ∆ξ, ξ ∈ (r, θ, ν, R,Θ, N),

∆N = 0

∆r = (1/2)p
(
1− 3s2 − s2 cos 2θ

)
∆θ = (pR/Θ)

[
1− 6c2 + (1− 2c2) cos 2θ

]
+(1/4)

[
3− 5c2 − 4(1− 3c2)(p/r)

]
sin 2θ

∆ν = (1/2) c [(pR/Θ)(6 + 2 cos 2θ) + (1− 4p/r) sin 2θ]

∆R = (pΘ/r2) s2 sin 2θ

∆Θ = (1/2)Θ s2 [(1− 4p/r) cos 2θ − (pR/Θ) sin 2θ]
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DRI: 2nd order improvements

• 2nd order transform. (r, θ, ν, R,Θ, N) −→ (r′, θ′, ν′, R′,Θ′, N ′)

– computed by “elimination of the parallax”

• New Hamiltonian term

– H0,2 = 1
4J

2
2

Θ2

r2

(
Φ1 + J3

J2
2

Φ2 + J4
J2

2
Φ3

)
– Φm = Φm(p, e, i, ω)

– p = p(Θ), e ≡ e(r,−, R,Θ), i ≡ i(Θ, N), ω ≡ ω(r, θ, R,Θ)

• No longer integrable, but H0,2 = Ψ(r,−, R,Θ) +O(eJ2
2)

• e small: H0,2 ≈ Ψ(r,−, R,Θ)

– again radial (integrable) and quasi-Keplerian!!

– limited to low e . . . most common case in LEO

– new periodic corrections more involved, yet manageable
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LEO Performance: examples

• Spot-type satellite:

– a = 7081.139 km, e = 0.0158, i = 98◦,

– Ω = 164.02◦, ω = M = 0

• Test cases for one day:

– Numerical integration of the J2–J4 problem

– Numerical integration of the J2 (main) problem

– Quasi-Keplerian intermediary in mean elements + . . .

∗ full 2nd order inverse & direct transformation eqs.

∗ simplified, 2nd order inverse + 1st order direct eqs.
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• J2–J4 model vs.: J2-numerical and intermediary (full)
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• J2–J4 vs. J2 numeric & intermediary (simp.): 3 times faster
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J3 long-period effects

• Clearly noted since the beginning of the propagation

– perigee dynamics, e, i dynamics

– intermediary only deals with J3 short-period effects

• New canonical transformation contrary to truncation

– Alfriend & Coffey’s elimination of the perigee (1984)

– extremely simple formulas for the case of LEO

• Sequence:

– short-period inverse corrections (J2, J2
2 , J3, J4)

– long-period inverse corrections (J3)

– quasi-Keplerian intermediary evaluation (J2, J2
2 and J4)

– long-period direct corrections (J3)

– short-period inverse corrections (J2)
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• without long-period corrections

• with J3 long-period corrections: observable improvements
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• 4 months without long-period corrections

• 4 months with J3 long-period corrections
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Conclusions

• Higher order geopotential: improves propagation of LEOs

– penalizes Cowell integration in terms of computing time

• Increase in computational burden −→ power consumption

– can be radically alleviated for the lower eccentricity orbits

– intermediary solution, within a reasonable accuracy.

∗ neglect terms O(e2J2
2) of the perigee dynamics

• Our intermediary: higher order secular and periodic effects

– compact form of straightforward evaluation (polar vars.)

– useful for onboard orbit propagation: restricted power

• Future improvements and work

– include atmospheric drag effects

– try other intermediaries: Aksnes, Vinti, 2 fixed centers
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