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ABSTRACT

A new intermediary solution to the earth satellite problem is
discussed. The intermediary takes into account the first three
zonal harmonics of the Geopotential. It is shown that this an-
alytical solution can advantageously replace the Cowell inte-
gration of the J2 problem which is customarily used onboard
for short-term prediction of low earth orbits.

Index Terms— Low earth orbit, Geopotential, natural in-
termediary, Lie transforms, elimination of the parallax

1. INTRODUCTION

Usual onboard orbit propagators are provided as navigation
maintenance aids for earth satellites. These programs should
be able to forecast satellite ephemeris within a reasonable ac-
curacy for short time periods, which may range from min-
utes, as in the case of momentary lack of GPS signal, to sev-
eral satellite orbits. In these brief intervals the accumulation
of second order effects of the Geopotential is barely appar-
ent, and, therefore, the propagation model can very simple.
Hence, common onboard orbit propagators are based in the
fixed-step numerical integration of the J2 model, that is, the
earth’s zonal Geopotential truncated to the zonal harmonic of
the second degree.

On the other hand, the use of analytical, intermediary so-
lutions of the J2 problem has been recently proposed as an
efficient alternative to the numerical integration. The accu-
racy of common intermediary orbits of the J2 problem is lim-
ited to first order effects, thus providing less precise solutions
than the numerical integration. However, because of the in-
herent uncertainty of the initial conditions to be propagated
onboard, it can be shown that both alternatives, the numeri-
cal integration and the intermediary approach, enjoy the same
statistics [1]. Other benefits of using analytical solutions is
that they may improve both memory allocation and compu-
tation time, a fact that can be crucial to Cubesats ore other
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small satellite missions, in which the computational abilities
may be restricted.

Note, however, that neglecting the long-period effects as-
sociated to the odd zonal harmonics introduces small errors
in the propagation, which are clearly observable even in the
short-term. These errors can exceed 1 km in the along-track
direction at the end of one day. Hence, taking into account
the disturbing effects of some higher order harmonics may
notably improve the propagation model.

Here, we propose a new intermediary solution that takes
into account the first three zonal harmonics of the Geopoten-
tial (J2, J3 and J4). Since the solution is analytical, its eval-
uation is very fast and is not constrained to a step-by-step
evaluation. In spite of the forces model of the new intermedi-
ary is much heavier than the simple J2 model, its evaluation
can be fastened using some simplifications that alleviate the
computational burden, in this way making the new interme-
diary definitely competitive when compared to the numerical
integration of the J2 problem.

2. LEO INTERMEDIARY SOLUTION

We study the motion of the satellite, considered as a mass
point, under the disturbing effects of the earth’s gravitational
potential. In particular, our model takes into account the ef-
fects of the zonal harmonics J2, J3, and J4. This model is of
limited accuracy, as shown in Fig. 1, where the clear increase
of the errors in the tangent direction is mostly related with the
drag perturbation. Nevertheless, it would improve predictions
in all those cases in which the simpler J2 model is currently
been used, as in onboard orbit propagation.

The problem is written using Hamiltonian formulation

H = HK +
µ

r

∑
m≥2

(α
r

)m
Cm,0 Pm(sinϕ), (1)

where HK represents the Keplerian attraction, and the dis-
turbing function encompasses the non-centralities of the grav-
itational potential, where µ is the earth’s gravitational param-
eter, r is the distance from the earth’s center of mass, ϕ is



Fig. 1. Radial (red lines), normal (green lines), and tangent
errors (blue lines) between the J2–J4 model and a realistic
model for a sample propagation of a Spot-type satellite.

geographic latitude, the scaling factor α is the earth’s equa-
torial radius, Pm are Legendre polynomials of degree m, and
Cm,0 = −Jm are corresponding zonal harmonic coefficients.

The differential equations of the flow corresponding to the
zonal Hamiltonian (1) are obtained from Hamilton equations.
Thus, the variation of each coordinate is given by the par-
tial derivative of the Hamiltonian with respect to its conjugate
momentum, whereas the variation of each momentum is given
by minus the partial derivative of the Hamiltonian with respect
to its conjugate coordinate. This flow is not integrable, in
general, but, in view of the smallness of the harmonic coeffi-
cients, approximate solutions can be found using perturbation
theory.

Thus, Eq. (1) is simplified by a canonical transformation
(x,X) −→ (x′,X ′), where x are coordinates and X their
conjugate momenta, from osculating to new (prime) vari-
ables. In particular, after carrying out the elimination of the
parallax simplification [2, 3, 4], up to the second order of
C2,0 we get the Hamiltonian in prime variables

K = − µ

2a
+

µ

2p

α2

r2
C2,0

(
1− 3

2
s2
)

+
µ

2p

p2

r2
(2)

×

{
− 3

4

α3

p3
es
(
1− 5c2

)
C3,0 sinω +

1

4

α4

p4
C2

2,0

×

[(
1

4
− 21

4
c4
)
− 3

2
e2
(
c2 − 5

8
s4
)

−3

8

(
1− 15c2

)
e2s2 cos 2ω

]
− 3

4

α4

p4
C4,0

×

[(
1− 5s2 +

35

8
s4
)(

1 +
3

2
e2
)

−5

8

(
1− 7c2

)
e2s2 cos 2ω

]}
,

where, because of the Hamiltonian dynamics, all the ele-
ments, viz. the semi-major axis a, the conic parameter p, the
eccentricity e, the radius r, the argument of the perigee ω,
and the inclination, given by s ≡ sin I , and c ≡ cos I , are not
variables but functions of some canonical set of variables.

Specifically, we use Delaunay variables (`, g, h, L,G,H),
standing for the mean anomaly, the argument of the perigee,
the right ascension of the ascending node, the Delaunay ac-
tion, the modulus of the angular momentum vector, and the
projection of the angular momentum vector on the earth’s ro-
tation axis, respectively. Then,

a =
L2

µ
, (3)

ω = g, (4)

s =
√

1− c2, (5)

c =
H

G
, (6)

e =
√

1− η2, (7)

η =
G

L
, (8)

p = aη2 =
G2

µ
, (9)

r =
p

1 + e cos f
, (10)

where
f ≡ f(`,−,−, L,G,−), (11)

is the true anomaly, which is an implicit function of ` that
involves the solution of the Kepler equation.

For the lower eccentricity orbits eC2
2,0 = O(C3

2,0), and
corresponding terms may be neglected from Eq. (2). In par-
ticular, this simplification prevents the appearance of the argu-
ment of the perigee in the Hamiltonian, which, by this reason,
turns out to be integrable.

Indeed, using polar-nodal variables (r, θ, ν, R,Θ, N),
where r has been defined in Eq. (10) and must be expressed
now in prime variables r ≡ r(`′,−,−, L′, G′,−),

θ = f(`′−,−, L′, G′,−) + g′, (12)

is the argument of the latitude, ν = h′,

R =

√
µ

a

e

η
sin f, (13)



is the radial velocity, also expressed in prime variables R ≡
R(`′,−,−, L′, G′,−), Θ = G′, and N = H ′, the simplified
Hamiltonian after neglecting the second order terms which
have the eccentricity as a factor, is written

K =
1

2

(
R2 +

Θ2

r2

)
− µ

r
+

1

2

Θ2

r2
ε
(
2− 3s2

)
(14)

+
1

2

Θ2

r2
ε2

[(
1

4
− 21

4
c4
)
− 3

C4,0

C2
2,0

(
1− 5s2 +

35

8
s4
)]

where we abbreviated

ε =
1

2

α2

p2
C2,0, (15)

and now, in the polar-nodal variables, c = N/Θ and p =
Θ2/µ. Note that, because the argument of the periapsis has
been removed from the Hamiltonian, θ is cyclic in Eq. (14)
and, therefore, Θ is constant and so it is ε ≡ ε(Θ).

The transformation equations leading to Eq. (2), and con-
sequently to the simplified Hamiltonian (14), are given in A,
where terms of the order of e2C2

2,0 have been neglected in
agreement with the aimed accuracy of the intermediary solu-
tion.

Equation (14) may be reorganized as

K =
1

2

(
R2 +

Θ2

r2
Φ2

)
− µ

r
, (16)

where Φ ≡ Φ(Θ, N) is given by

Φ2 = 1 + ε
(
2− 3s2

)
(17)

+ε2

[(
1

4
− 21

4
c4
)
− 3

C4,0

C2
2,0

(
1− 5s2 +

35

8
s4
)]

which is also constant. The new Hamiltonian in Eq. (16) rep-
resents a quasi Keplerian system with varied “angular mo-
mentum” Θ̃ = ΘΦ, and it can be integrated by the usual
Hamiltonian reduction in Delaunay variables. The sequence
is as follows (see [1] for further details).

1. Compute the constants c = N/Θ, s = (1−c2)1/2, and:

(a) evaluate ε from Eq. (15), with p = Θ2/µ;

(b) evaluate Φ in Eq. (17), and K = E in Eq. (16);

(c) make ã = −µ/(2E), p̃ = (ΘΦ)2/µ, and ẽ =
(1− p̃/ã)1/2.

2. Starting from the polar-nodal variables and t = t0:

(a) solve the auxiliary variable φ from

r̃ =
p̃

1 + ẽ cosφ
, R̃ =

√
µ

p̃
ẽ sinφ; (18)

(b) compute the auxiliary variable u from

tan
u

2
=

√
1− ẽ
1 + ẽ

tan
φ

2
; (19)

(c) finally, evaluate

λ = u− ẽ sinu, (20)

γ = θ − φ

Φ

{
1 + ε (1− 6c2)− 3

8
ε2 ×

[
(21)

2− 70c4 − (3− 35c2)(3− 5c2)C̃4,0

]}
,

h = ν − 3ε
φ

Φ
c (22)

×
{

1−
[

7

2
c2 − 5

4
(3− 7c2)C̃4,0

]
ε

}
,

where C̃4,0 = C4,0/C
2
2,0.

3. Then, for a given time t:

(a) evaluate λ = λ(t0) +
√
µ/ã3t;

(b) solve Eq. (20) for u and compute φ from Eq. (19)

(c) evaluate r and R from Eq. (18), and solve θ from
Eq. (21), and ν from Eq. (22).

3. NUMERICAL EXPERIMENTS

In order to check the usefulness of the intermediary solution,
we compare it with the numerical integration of the origi-
nal problem in Cartesian coordinates —the flow derived from
Eq. (1) with m = 4— for a variety of test cases.

First of all, we illustrate the effects of neglecting second
order terms of the Earth gravitational potential for a Eyesat-
type satellite, which is a Cubesat. We use the initial condi-
tions corresponding to the following orbital elements

a = 7078.0 km,

e = 0.00001,

i = 98.18◦,

Ω = 0,

ω = 0,

M = 0,

and propagate them for 4 months (or about 1750 orbital pe-
riods). Errors between the full zonal model propagation and
the J2 truncation are shown in Fig. 2 (blue lines), where corre-
sponding errors between the full zonal model propagation and
the intermediary propagation (red lines) have been superim-
posed. Note that because of the low eccentricity of the Eyesat
orbit, instead of providing errors for the mean anomaly, the
argument of the perigee and the eccentricity, in order to avoid



additional errors introduced by the inaccurate determination
of the argument of perigee, we provide errors for the usual
alternative elements [5]

F = M + ω, C = e cosω, S = e sinω. (23)

The effects of neglecting the long-period terms of the J3
contribution are clearly apparent in Fig. 2. In particular, a
long-period modulation of the errors of the intermediary prop-
agation with the same period as the argument of the perigee
(of about 16 weeks and a half) are clearly noted. In the case
of the elements C and S, the errors are almost the same in the
J2 propagation and in the intermediary evaluation, although
for the later the amplitude of the short-period terms is almost
negligible, in consequence with the short-period corrections
used by the intermediary. On the contrary, the contribution of
J4 makes that errors introduced by the J2 truncation are un-
acceptable, and are particularly evident in the evolution of the
errors of Ω and the element F . On the other hand, when using
the intermediary solution the errors for these two elements are
almost negligible, falling below 4 arc seconds in any case.

Similar tests have been performed for a variety of orbits,
always finding analogous results. In particular, different sim-
ulations have been carried out for the parameters of a typical
common LEO, with orbital elements

a = 6831.5723 km,

e = 0.001357,

i = 51.6◦,

Ω = 224.8◦,

ω = 280.1◦,

M = 66.5◦.

Sample errors for one day propagation are presented in Fig. 3;
the errors in the intermediary and Runge-Kutta propagations
overlap each other for the elements e cosω and e sinω, and
are not presented .

4. CONCLUSIONS

A compact analytical solution of the zonal problem has been
obtained, which neglects secular and periodic effects of the
third order of J2 as well as long-period effects of the or-
der O(e J2

2 ). This intermediary solution clearly improves the
short-term propagation of LEO orbits when compared to the
Cowell step by step numerical integration of the J2 problem,
both in accuracy and evaluation speed. Hence it may be ade-
quate for onboard orbit propagation in such satellite missions
in which reduced power consumption is a constraint.

On the other hand, the zonal intermediary provided here
misses long-period effects related to the perigee dynamics.
However, an additional canonical transformation that re-
moves, contrary to neglects, the perigee dynamics may be

implemented, in this way allowing to cope with these long-
period effects. An improved zonal intermediary that properly
deals with the long-period terms associated to the J3 dynam-
ics is under development and corresponding results will be
reported elsewhere.

A. THE ELIMINATION OF THE PARALLAX
TRANSFORMATION

The elimination of the parallax is a canonical transformation
depending on a small parameter ε

P : (x,X) −→ (x′,X ′, ε)

from original to “prime” variables, where x are coordinates
and X their conjugate momenta, such that, up to some trunca-
tion orderO(εm), it removes parallactic terms from the zonal
Hamiltonian, in which case ε = J2 [2, 3, 4].

Calling ξ to any of the canonical variables and using ε =
1
2 (α/p)2C2,0, as given in Eq. (15), the direct transformation
is written

ξ = ξ′ + ε∆1ξ
′ +

1

2
ε2 δ1ξ

′ +O(ε3),

and the inverse transformation

ξ′ = ξ + ε∆2ξ +
1

2
ε2 δ2ξ +O(ε3).

The corrections are naturally expressed in polar nodal
variables and are given below, where the eccentricity func-
tions

κ =
p

r
− 1, σ =

pR

Θ
, (24)

with p = Θ2/µ, are used for convenience. Besides, the no-
tation C̃n,0 = Cn,0/C

2
2,0 is used in the second order correc-

tions.
Note that the first order corrections were first provided by

[2], and are given here for the sake of completeness —yet in
the arrangement proposed in [1] whose numerical evaluation
is much more efficient. Besides second order terms corre-
sponding to the J2 perturbation have been previously given
in [6]. Note also that terms of the order of the square of
the eccentricity have been neglected from the second order
corrections, which shortens the correction series, in this way
fastening their evaluation and improving the intermediary’s
performance, and is consistent with the assumptions of ne-
glecting from the intermediary the long-period effects related
to the perigee dynamics.

First order corrections
The first-order corrections are formally the same both for the
direct and inverse transformations but with different signs,
namely ∆1 = ∆ and ∆2 = −∆ where:

∆r = p

(
1− 3

2
s2 − 1

2
s2 cos 2θ

)
, (25)



Fig. 2. Errors between the main problem and the full zonal model (blue lines) and between the intermediary and the full zonal
model (red lines) for a EYESAT-type satellite.



Fig. 3. Errors between the main problem and the full zonal model (blue lines) and between the intermediary and the full zonal
model (red lines) for one day propagation of a typical LEO.

∆θ =
[
1− 6c2 + (1− 2c2) cos 2θ

]
σ (26)

−

[
1

4
− 7

4
c2 + (1− 3c2)κ

]
sin 2θ,

∆ν = c

[
(3 + cos 2θ)σ −

(
3

2
+ 2κ

)
sin 2θ

]
, (27)

∆R =
Θ

p
(1 + κ)2s2 sin 2θ, (28)

∆Θ = −Θ s2
[(

3

2
+ 2κ

)
cos 2θ + σ sin 2θ

]
, (29)

∆N = 0, (30)

where the right member of each of Eqs. (25)–(30) as well
as p in Eq. (15) must be expressed in prime variables when
computing ∆1ξ

′ = ∆ξ′, or in original ones when computing
∆2ξ = −∆ξ.

Second order direct corrections

The right sides are assumed to be expressed in prime vari-
ables.

δ1r

p′
=

1

4
(5− 14c2 − 23c4)− 1

16
(9− 26c2 + 41c4)κ

+
1

16
σ(3 + 51c2)s2 sin 2θ +
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16
κ

×(23− 153c2)
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s2 cos 2θ − 1

16
(4− κ)s4 cos 4θ
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9

32
σs4 sin 4θ +

p
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×
(
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)
− 1
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]

+ C̃4,0

[
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(45

16
σ sin 2θ − 5

16
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(2 + κ)(3− 30c2
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7

16
(2 + 5κ)s4 cos 4θ +

35

32
σs4 sin 4θ
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δ1θ =

σ
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[
− 65 + 314c2 + 327c4 − (1609c4 − 1240c2
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Second order inverse corrections

Now, the right sides must remain in the original variables
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7

2
σs2 cos 4θ + 5(1 + 4κ)(4− 7c2)

× sin 2θ −
(

35

8
+ 14κ

)
s2 sin 4θ

]}

δ2R =
Θ

p

{
σ

16
(9− 26c2 + 41c4) +

σ

16
(23− 153c2)

×s2 cos 2θ − σ

16
s4 cos 4θ + s2

[
2(1− 11c2)

+
1

16
(59− 725c2)κ

]
sin 2θ +

(
1 +

95

32
κ

)
×s4 sin 4θ +

p

α
C̃3,0

[
1

2
(1− 5c2)s

(
4σ sin θ

−(3 + 10κ) cos θ
)

+ 2σs3 sin 3θ +

(
15

4

+
73

6
κ

)
s3 cos 3θ

]
+ C̃4,0

[
9σ

16
(3− 30c2

+35c4)− 15

16
σ(1− 7c2)s2 cos 2θ − 35

16
σs4

× cos 4θ − 5

16
(1− 7c2)(16 + 47κ)s2 sin 2θ

+
7

32
(16 + 67κ)s4 sin 4θ

]}

δ2Θ = Θ

{
−
[

1

4
(7− 25c2) + 6(1− 3c2)κ

]
s2

−

[
3

2
(1− 9c2) + (4− 44c2)κ

]
s2 cos 2θ

+
3

4
s4 cos 4θ − σ(2− 28c2)s2 sin 2θ − 3

2
σ

×s4 sin 4θ +
p

α
C̃3,0

[
− 3

2
(1− 5c2)s

(
σ

× cos θ + (2 + κ) sin θ
)

+
5

4
(4 + 9κ)s3

× sin 3θ − 15

4
σs3 cos 3θ

]
+ C̃4,0

[
5

2

×(1− 7c2)s2
(

2σ sin 2θ + (1 + 4κ) cos 2θ
)

−7

8
(5 + 16κ)s4 cos 4θ − 7

2
σs4 sin 4θ

]}
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