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ABSTRACT

The algorithms used in the construction of a semi-analytical
propagator for the long-term propagation of Highly Ellipti-
cal Orbits (HEO) are described. The software propagates
mean elements and include the main gravitational and non-
gravitational effects that may affect common HEO orbits, as,
for instance, geostationary transfer orbits or Molniya orbits.

Index Terms— HEO, Geopotential, third-body perturba-
tion, tesseral resonances, SRP, atmospheric drag, mean ele-
ments, semi-analytic propagation

1. INTRODUCTION

A semi-analytical orbit propagator to study the long-term evo-
lution of spacecraft in Highly Elliptical Orbits is presented.
The perturbation model taken into account includes the grav-
itational effects produced by the first nine zonal harmonics
and the main tesseral harmonics affecting to the 2:1 reso-
nance, which has an impact on Molniya orbit-types, of Earth’s
gravitational potential, the mass-point approximation for third
body perturbations, which only include the Legendre polyno-
mial of second order for the sun and the polynomials from
second order to sixth order for the moon, solar radiation pres-
sure and atmospheric drag. Hamiltonian formalism is used to
model the forces of gravitational nature so as to avoid time-
dependence issues the problem is formulated in the extended
phase space. The solar radiation pressure and the atmospheric
drag are added as generalized forces. The semi-analytical the-
ory is developed using perturbation techniques based on Lie
transforms. Deprit’s perturbation algorithm is applied up to
the second order of the second zonal harmonics, J2, includ-
ing Kozay-type terms in the mean elements Hamiltonian to
get “centered” elements. The transformation is developed in
closed-form of the eccentricity except for tesseral resonances
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and the coupling between J2 and moon’s disturbing effects
are neglected. The paper outlines the semi-analytical theory.

2. DYNAMICS OF A SPACECRAFT IN HEO

Satellites in earth’s orbits are affected by a variety of perturba-
tions of a diverse nature. A full account of this can be found
in textbooks on orbital mechanics like [1]. All known per-
turbations must be taken into account in orbit determination
problems. But for orbit prediction the accuracy requirements
are notably relaxed, and hence some of the disturbing effects
may be considered of higher order in the perturbation model.

Furthermore, for the purpose of long-term predictions it
is customary to ignore short-period effects, which occur on
time-scales comparable to the orbital period. Thus, in the case
of the gravitational potential the focus is on the effect of even-
degree zonal harmonics, which are known to cause secular
effects. Odd-degree zonal harmonics may also be important
because they originate long-period effects, whereas the effects
of tesseral harmonics in general average out to zero. The lat-
ter, however, can have an important effect in resonant orbits,
as in the case of geostationary satellites (1 to 1 resonance) or
GPS and Molniya orbits (2 to 1 resonance).

The importance of each perturbation acting on an earth’s
satellite depends on the orbit’s characteristics, and fundamen-
tally on the altitude of the satellite, but also on its mean mo-
tion. Thus, for instance the atmospheric drag, which can have
an important impact in the lower orbits, may be taken as a
higher order effect for altitudes above, say, 800 km over the
earth’s surface, and is almost negligible above 2000 km.

A sketch of the order of different perturbations when com-
pared to the Keplerian attraction is presented in Fig. 1 based
on approximate formulas borrowed from [1, p. 114]. As il-
lustrated in the figure, the non-centralities of the Geopotential
have the most important effect in those parts of the orbit that
are below the geosynchronous distance, where the J2 contri-
bution is a first order effect and other harmonics cause second
order effects. To the contrary, in those parts of the orbit that
are farther than the geosynchronous distance the gravitational
pull of the moon is the most important perturbation, whereas



that of the sun is of second order when compared to the dis-
turbing effect of the moon, and perturbations due to J2 and
solar radiation pressure (SRP) are of third order.
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Fig. 1. Perturbation order relative to the Keplerian attraction.

Finally, we recall that integration of osculating elements
is properly done only in the True of Date system [2]. For this
reason Chapront’s solar and lunar ephemeris are used [3, 4],
which are directly referred to the mean of date thus including
the effect of equinoctial precession.

In the case of a highly elliptic orbit (HEO) the distance
of the satellite to the earth’s center of mass varies notably
along the orbit, a fact that makes particularly difficult to es-
tablish the main perturbation over which to set up the correct
perturbation arrangement. This issue is aggravated by the im-
portance of the gravitational pull of the moon on high altitude
orbits, which requires taking higher degrees of the Legendre
polynomial expansion of the third-body disturbing function
into account. Since this expansion converges slowly, the size
of the multivariate Fourier series representing the moon per-
turbation will soon grow enormously. Besides, for operational
reasons, different HEOs may be synchronized with the earth
rotation, and hence, being notably affected by resonance ef-
fects. Also, a HEO satellite will spend most of the time in the
apogee region, where the solar radiation pressure may have
an observable effect in the long-term, yet depending on the
physical characteristics of the satellite. Finally, the perigee
of usual geostationary transfer orbits (GTO) will enter repeat-
edly the atmosphere, although only for short periods.

Therefore, a long-term orbit propagator for HEO aiming
at describing at least qualitatively the orbit evolution must
consider the following perturbations:

• the effects of the main zonal harmonics of the Geopo-
tential as well as second order effects of J2;

• tesseral effects for the most common resonances. In
particular, the 2:1 affecting Molnya orbits, or super syn-
chronous resonances affecting space telescope orbits;

• lunisolar perturbations in the mass-point approxima-

tion, including at least the effects of the first few terms
of the Legendre polynomials expansion of the third-
body perturbation for the moon, and at least the effect
of the polynomial of the second degree for the sun;

• solar radiation pressure effects;

• and the circularizing effects of atmospheric drag affect-
ing the orbit semi-major axis and eccentricity.

In what respects to the ephemeris of the sun and moon
needed for evaluating the corresponding disturbing poten-
tials, the precision provided by simplified analytical formulas
should be enough under the accuracy of a perturbation theory.
For this reason truncated series from [5] of Chapront’s solar
and lunar ephemeris are enough at the precision of the mean
elements propagation and notably speed the computations.

3. HAMILTONIAN ARRANGEMENT

The averaged Hamiltonian is constructed by the Lie trans-
forms technique [6], including the time dependence in the so-
lution of the homological equation.

Thus, the Hamiltonian is arranged as a power series in a
small parameter ε, viz. H =

∑
m≥0(εm/m!)Hm,0, with

H0,0 = −µ/(2a)

H1,0 = −(µ/r)(R⊕/r)
2C2,0P2(sinϕ)

1

2
H2,0 = −(µ/r)

∑
m>2

(R⊕/r)
mCm,0Pm(sinϕ) + T + V(| + V�

where µ is the earth’s gravitational parameter, (r, ϕ, λ) are
spherical coordinates and a is the semi-major axis of the satel-
lite’s orbit, R⊕ is the earth’s equatorial radius, Pm are Leg-
endre polynomials, andCm,0 are zonal harmonic coefficients.
The tesseral disturbing function is

T =−µ
r

∑
m≥2

Rm⊕
rm

m∑
n=1

Pm,n(sinϕ)[Cm,n cosnλ+Sm,n sinnλ]

in which Pm,n are associated Legendre polynomials while
Cn,m and Sn,m, m 6= 0, are non-zonal harmonic coefficients.
Under the assumption of point masses,

V? = −(µ?/r?)
(
r?/||r − r?|| − r · r?/r2?

)
(1)

where V? ≡ V(| for the moon, and V? ≡ V� in the case of the
sun. The disturbing body is far away from the perturbed body
when dealing with perturbed Keplerian motion. Then Eq. (1)
can be expanded in power series of the ratio r/r?

V? = −β (n2?a
3
?/r?)

∑
m≥2

(r/r?)
mPm(cosψ?), (2)

where β = m?/(m? +m) and

cosψ? = (xx? + yy? + zz?)/(rr?) (3)



The semi-analytic theory only considers P2 in Eq. (2) for
the sun potential, whereas P2–P6 are taken for the moon.

The Lie transforms averaging is only developed up to the
second order in the small parameter, so there is no coupling
between the different terms of the disturbing function. Hence,
the generating function of the averaged Hamiltonian can be
split into different terms which are simply added at the end.

3.1. Time dependency

Orbits with large semi-major axis will experience high pertur-
bations from the moon’s gravity, and may be better described
under the three-body problem model. However, since our ap-
proach is based on perturbed Keplerian motion, we still take
as the zero order Hamiltonian the Keplerian term.

Because the sun and moon ephemeris are known func-
tions of time, the perturbed problem remains of three degrees
of freedom, but the Lie derivative must take the time depen-
dency into account, viz. L0(W) ≡ {H0,0;W} + ∂W/∂t =
n∂W/∂`+ ∂W/∂t.

Dealing explicitly with time can be avoided by moving
to the extended phase space. Then, assuming that the semi-
major axis, eccentricity, and inclination of the third-body or-
bits, remain constant

L0 = n
∂W
∂`

+ n(|
∂W
∂`(|

+ ġ(|
∂W
∂g(|

+ ḣ(|
∂W
∂h(|

+ n�
∂W
∂`�

+ . . .

which, in view of the period of the lunar perigee of 8.85 years
(direct motion) and of the lunar node of 18.6 years (retrograde
motion), can be safely approximated by

L0 ≈ n∂W/∂`+ n(|∂W/∂`(| + n�∂W/∂`� (4)

Note, however, that in the present stage, the theory only deals
with mean elements and corresponding homological equa-
tions does not need to be solved. Future versions of the theory
may take the short-period corrections due to third-body per-
turbations into account.

3.2. Third body direction

For the semi-analytic theory, the time dependency will man-
ifest only in the short-period corrections, which are derived
from the generating function W . In view of the form of the
Lie derivative in Eq. (4), the directions of both the sun and
the moon must be expressed as functions of the sun and moon
mean anomaly, respectively. For the sun, we use

r� = R1(−ε)R3(−λ�)R2(β�) (r�, 0, 0)τ (5)

where τ means transposition, ε is the mean obliquity of the
ecliptic, and r� is the radius of the sun, and β� and λ� are
the ecliptic latitude and longitude of the sun, respectively. The
sun’s latitude can be neglected in view of it never exceeds 1.2
arc seconds when referred to the ecliptic of the date.

In the case of the moon, because the lunar inclination to
the equator is not constant, the orbit is rather referred to the
mean equator and equinox of the date by means of

r(| = R1(−ε)R3(−Ω(|)R1(−J)R3(−θ(|) (r(|, 0, 0)τ

where θ(| is the argument of the latitude of the moon, J ≈
5.◦15 is the inclination of the moon orbit over the eclip-
tic, which is affected of periodic oscillations whose period
slightly shorter than half a year because the retrograde motion
of the moon’s line of nodes, and Ω(| is the longitude of the
ascending node of the moon orbit with respect to the ecliptic
measured from the mean equinox of date. Solar and lunar
ephemerides are taken from the low precision formulas in [5].

Besides, for orbital applications, instead of using spheri-
cal coordinates the satellite’s radius vector is expressed in or-
bital elements; This can be done by first replacing the spheri-
cal coordinates by Cartesian ones: sinϕ = z/r, sinλ = y/q,
cosλ = x/ρ, where q =

√
x2 + y2. Then, the orbital and

inertial frame are related by means of simple rotationsRi(α):

(x, y, z)τ = R3(−Ω)R1(−I)R3(−θ) (r, 0, 0)τ (6)

where θ = f +ω, r = p/(1 + e cos f), and (a, e, I,Ω, ω,M)
are traditional orbital elements.

4. AVERAGING ZONAL TERMS

The zonal part of the Hamiltonian is first transformed. Be-
cause of the actual values of the zonal coefficients of the earth,
the old Hamiltonian is arranged in the form

H0,0 = −µ/(2a) (7)

H1,0 = −(µ/r) (R⊕/r)
2
C2,0P2(sin I sin θ) (8)

H2,0 = −2(µ/r)
∑
m>2

(R⊕/r)
2
Cm,0Pm(sin I sin θ) (9)

where all the symbols, viz. a, r, I , and θ, are assumed to
be functions of some set of canonical variables. In particular,
the averaging is carried out based on the canonical set of De-
launay variables, which is made of the coordinates ` = M ,
g = ω, h = Ω, and their conjugate momenta L =

√
µa,

G = Lη, H = G cos I , respectively. These variables are the
action-angle variables of the Keplerian motion.

The homological equation is −n(∂Wm/∂`) + H̃0,m =
H0,m, and hence terms of the generating function are com-
puted from quadratures.

4.1. Elimination of the parallax

It is known that the removal of short-period terms from the
Hamiltonian is facilitated to a large extent by a preprocess-
ing of the original Hamiltonian in order to remove parallactic
terms [7]. That is, by first applying the parallactic identity

1

rm
=

1

r2
1

rm−2
=

1

r2
(1 + e cos f)m−2

pm−2
, m > 2, (10)



and then selecting H0,m by removing all the trigonometric
terms of the expansion of Hm,0 as a Fourier series that ex-
plicitly contain the true anomaly [8, 9].

The 1st step of Deprit’s recurrence is H̃0,1 ≡ H1,0, where

H1,0 = C2,0(R⊕/r)
2n2p2/(8η6)

{
(4− 6s2)(1 + e cos f)

+3 [e cos(f + 2ω) + 2 cos(2f + 2ω) + e cos(3f + 2ω)] s2
}

Then, the new Hamiltonian termH0,1 is selected as

H0,1 = C2,0(R⊕/r)
2n2p2(1/η6)(1/4)

(
2− 3s2

)
(11)

and the generating function term W1 must be solved from the
homological equation −n(∂W1/∂`) + H̃0,1 = H0,1. That is,

W1 = (1/n)

∫ {
C2,0(R⊕/r)

2n2p2/(8η6) (12)

×
[ (

4− 6s2
)
e cos f + s2

∑
j=1,3

jE1,j cos(jf + 2ω)
]}

d`

in which E1,1 = 3e, E1,2 = 3, E1,3 = e. Equation (12) is
solved in closed form by recalling the differential relation

dM = (r/p)2η3 df, (13)

based on the preservation of the angular momentum of the
Keplerian motion. We get

W1 = k+nR2
⊕
C2,0

8η3

[
(4−6s2)e sin f+s2

3∑
j=1

E1,jsin(jf+2ω)
]

where k is an arbitrary function independent of `.
To avoid the appearance of hidden long-period terms in

W1, k is chosen to guarantee that 1
2π

∫ 2π

0
W1 dM = 0. Using,

again, Eq. (13) to compute the quadrature, we get

k = (1/8)nR2
⊕C2,0η

−3(1 + 2η)(1− η)(1 + η)−1s2 sin 2ω.

Therefore, calling E1,0 = (1 + 2η)(1− η)/(1 + η)

W1 = nR2
⊕
C2,0

8η3

[
(4−6s2)e sin f+s2

∑
j=0,3

E1,jsin(jf+2ω)
]

At order 2, Deprit’s recurrence gives: H0,2 = {H0,1,W1}+
H1,1, andH1,1 = {H0,0,W2}+ {H1,0,W1}+H2,0. There-
fore, the homological equation is −n(∂W2/∂`) + H̃0,2 =

H0,2, where H̃0,2 = {H0,1,W1}+ {H1,0,W1}+H2,0.
After performing the required operations, parallactic

terms are removed from H̃0,2 using Eq. (10). Then, H̃0,2

is written in the form of a Poisson series, and H0,2 is chosen
by removing the trigonometric terms of H̃0,2 that explicitly
depend on the true anomaly, to give:

H0,2 = 2(µ/p)(p/r)2
∑
i=3,10

J∗i − (µ/p)(p/r)2C2
2,0(R⊕/p)

4

×
{5

4
− 21

8
s2 +

21

16
s4 +

3

8

(
c2 − 5

8
s4
)
e2

−3

8

[15

2
− 35

4
s2 −

(
4− 5s2

) η2

(1 + η)2

]
e2s2 cos 2ω

}
with

J∗i = Ci,0
Ri⊕
pi

bi/2c−1∑
j=0

elQi,ls
lBi,l ı̇ı

m exp(ı̇ı lω) (14)

where l = 2j +m, b c notes an integer division, m ≡ i mod
2, and ı̇ı = (−1)1/2. The eccentricity polynomials Qi,j and
inclination polynomials Bi,j are given in Tables 1, 2, and 3,
respectively. Note that Eq. (14) applies also to i = 2; indeed
H0,1 = (µ/p)(p/r)2J∗2 .

Finally, the simplified Hamiltonian is obtained by replac-
ing the old variables by the new ones in all the H0,m terms.
That is, the new Hamiltonian is obtained by assuming that all
symbols that appear in the H0,m terms are functions of the
new (prime) Delaunay variables.

4.2. Delaunay normalization

After the preparatory simplification, it is trivial to remove the
remaining short-period terms from the simplified Hamilto-
nianH′ =

∑
(εm/m!)H′m,0, whereH′0,0 is the same asH0,0,

H′1,0 is the same asH0,1 in Eq. (11), and,H′2,0 is the same as
H0,2, but all of them expressed in the new, prime variables.

The new Hamiltonian term H′0,1 is chosen by removing
the short-period terms fromH′1,0, namely

H′0,1 =
1

2π

∫ 2π

0

H′1,0dM =
µ

p
C2,0

R2
⊕
p2

η3
(

1

2
− 3

4
s2
)

which was trivially solved using Eq. (13).
The first term of the new generating function is solved by

quadrature from the homological equation from which

W ′1 =
1

n

[
−H′0,1`+

∫
H′1,0(r/p)2η3 df

]
=
φ

n
H′0,1,

where φ = f −M is the equation of the center. Since φ is
made only of short-period terms, there is no need of introduc-
ing additional integration constants.

At the second order, the computable terms of the homo-
logical equation are H̃′0,2 = {H′0,1,W ′1} + {H′1,0,W ′1} +
H′2,0, from which expression the new Hamiltonian termH′0,2
is chosen by removing the short-period terms.

After performed the required operations and replac-
ing prime variables by new, double prime variables in all
the H′0,m terms, we get the averaged Hamiltonian H′′ =
H′0,1 + (1/2)H′0,2, viz.

H′′ =
µ

p
η3

∑
i=2,10

J∗i +
µ

p
η3C2

2,0(R⊕/p)
4(3/16) (15)



×
{

(1− 5c2)c2 −
(

1

3
+ s2 − 17

8
s4
)
e2 − (1− 3c2)2

×1

2
η −

[
5

4
(1− 7c2)− (1− 5c2)η2

(1 + η)2

]
e2s2 cos 2ω

}
,

5. THIRD-BODY AVERAGING

Now, the perturbation Hamiltonian is arranged

H0,0 = −µ/(2a), H1,0 = 0, H2,0 = 2V(| + 2V�

where the sun and moon potentials are computed from Eq. (2).
Since the maximum power of χ in Pm(χ) is χm, in view

of Eqs. (2) and (3), we check that the satellite’s radius r ap-
pears now in numerators, contrary to the geopotential case.
Therefore, the closed form theory is approached now using
the eccentric anomaly u instead of the true one f . Hence,
r = a(1−e cosu), and the Cartesian coordinates of the satel-
lite are obtained from Eq. (6) using the known relations on the
ellipse: r sin f = aη sinu, r cos f = a(cosu− e).

Because H1,0 ≡ 0 we choose H0,1 = 0 and trivially find
W1 = 0. Then, the second order of the homological equation
is L0(W2) + H̃0,2 = H0,2, where, from Deprit’s recurrence,
H̃0,2 = H2,0. The new Hamiltonian term H0,2 is chosen
by removing the short-period terms in H2,0. Again, this is
done by closed-form averagingH0,2 = 1

2π

∫ 2π

0
H2,0(r/a) du

where we used the differential relation

dM = (1− e cosu) du = (r/a) du (16)

which is obtained from Kepler equation.
The averaging produces the long-term Hamiltonian [10]

H0,2 = 2(na)2β∗(a?/r?)
3(n?/n)2

∑
m≥2

(a/r?)
m−2 Γm

with the non-dimensional coefficients

Γm =

bm/2c∑
j=0

Am,j

m∑
l=−m

Pm,j,l
(
S?m,l cosα+ T ?m,l sinα

)
(17)

where α = (2j + k)ω + lΩ, and k = mmod 2.
The eccentricity coefficients Am,j(e), the inclination

ones Pm,j,l(i), and the third-body direction coefficients
T ?m,l(u, v, w), S?m,l(u, v, w), are given in Tables 4, 5–9, and
10, respectively. They are valid for both the moon (? ≡ (|)
and the sun (? ≡ �) by using, when required, the proper
third-body direction vector (u, v, w) ≡ (u?, v?, w?).

6. TESSERAL RESONANCES

The tesseral potential is no longer symmetric with respect
to the earth’s rotation axis. Therefore, longitude dependent
terms will explicitly depend on time in the inertial frame. To

avoid the explicit appearance of time in the Hamiltonian, we
move to a rotating frame with the same frequency as the ro-
tation of the earth. The argument of the node in the rotating
frame is h = Ω− n⊕ t, where n⊕ is the earth’s rotation rate,
and, to preserve the Hamiltonian character, we further intro-
duce the Coriolis term −n⊕H . It is then simple to check that
H = Θ cos I still remains as the conjugate momentum to h.

Thus, the tesseral Hamiltonian is arranged as

H0,0 = −µ/(2a)− n⊕Θ cos I, H1,0 = 0, H2,0 = 2T ,

where, now, H0,0 is the Keplerian in the rotating frame.
Hence, the Lie derivative reads {H0,0;W} = −n∂W/∂` +
n⊕∂W/∂h, and the solution of the homological equation
will introduce denominators of the type (in − jn⊕), with
i and j integer. Therefore, resonances between the rotation
rate of the node in the rotating frame and mean motion of the
satellite i/j = n⊕/n introduce the problem of small divisors.

In fact, resonant tesseral terms introduce long-period
terms in the semi-major axis that may be not negligible even
at the limited precision of a long-term propagation. There-
fore, these terms must remain in the long-term Hamiltonian.
Furthermore, these terms must be traced directly in the mean,
contrary to true, anomaly to avoid leaving short-period terms
in the Hamiltonian, which will destroy the performance of the
semi-analytical integration. Therefore, trigonometric func-
tions of the true or the eccentric anomaly must be expanded
as Fourier series in the mean anomaly whose coefficients are
power series in the eccentricity.

After the short-period terms have been removed from the
tesseral Hamiltonian, we come back to the inertial frame by
dropping the Coriolis term and replacing h by the RAAN, in
this way explicitly showing the time into resonant terms of
the long-term Hamiltonian.

From Kaula expansions [11], we find that the main terms
of the Geopotential that are affected by the 2:1 tesseral reso-
nance areR2:1 = −(µ/a)(R⊕/a)2(3/4)R2:1, with

R2:1 = F2,2,0G2,0,−1 [C2,2 cos(α+ 2ω) + S2,2 sin(α+ 2ω)]

+F2,2,1G2,1,1 (C2,2 cosα+ S2,2 sinα)

+F2,2,2G2,2,3 [C2,2 cos(α+ 2ω) + S2,2 sin(α− 2ω)]

where α = 2(Ω− n⊕t) +M is the resonant angle,

F2,2,0 = (1+ c)2, F2,2,1 = 2s2, F2,2,2 = (1− c)2 (18)

and, up to O(e16),

G2,0,−1 = −1

2
e+

1

16
e3 − 5

384
e5 − 143

18432
e7 − 9097e9

1474560

− 878959e11

176947200
− 121671181e13

29727129600
− 4582504819e15

1331775406080

G2,1,1 =
3

2
e+

27

16
e3 +

261

128
e5 +

14309

6144
e7 +

423907

163840
e9

+
55489483

19660800
e11 +

30116927341

9909043200
e13 +

2398598468863

739875225600
e15



G2,2,3 =
1

48
e3 +

11

768
e5 +

313

30720
e7 +

3355

442368
e9

+
1459489e11

247726080
+

187662659e13

39636172800
+

33454202329e15

8561413324800

Other 2:1-resonant terms can be found in [12]. For the 1:1
resonance,R1:1 = −(µ/a)(R⊕/a)2(3/4)R1:1, with

R1:1 = [C2,2 cos(2α+ 2ω) + S2,2 sin(2α+ 2ω)]F2,2,0

×G2,0,0 + [C2,2 cos 2α+ S2,2 sin 2α]F2,2,1G2,1,2

+F2,1,0G2,0,−1 [C2,1 sin(α+ 2ω)− S2,1 cos(α+ 2ω)]

+F2,1,1G2,1,1 (C2,1 sinα− S2,1 cosα)

+F2,1,2G2,2,3 [−S2,1 cos(α− 2ω) + C2,1 sin(α− 2ω)]

where now α = Ω− n⊕t+M .
For the earth, C2,1 = O(10−10) and S2,1 = O(10−9);

hence corresponding terms are commonly neglected from the
resonant tesseral potential R1×1. Therefore, the needed in-
clination polynomials are only F2,2,0 and F2,2,1, which were
already given in Eq. (18), whereas the required eccentricity
functions, up to O(e16), are

G2,0,0 = 1− 5

2
e2 +

13

16
e4 − 35

288
e6 − 5

576
e8 − 49

3600
e10

− 3725

331776
e12 − 7767869

812851200
e14 − 5345003

650280960
e16

G2,1,2 =
9

4
e2 +

7

4
e4 +

141

64
e6 +

197

80
e8 +

62401

23040
e10

+
262841

89600
e12 +

9010761

2867200
e14 +

8142135359

2438553600
e16

7. GENERALIZED FORCES

The evolution equations are completed adding the averaged
effects of the generalized forces to the Hamilton equations.

7.1. SRP

In the cannonball approximation, the perturbing acceleration
caused by solar-radiation pressure, is always in the opposite
direction of the unit vector of the sun αsrp = −Fsrpi�. If,
besides, it is assumed that the parallax of the sun is negli-
gible, the solar flux is constant along the orbit of the satel-
lite, and there is no re-radiation from the earth’s surface [13],
then Fsrp = (1 + β)P� (a�/r�)2(A/m) where β is the in-
dex of reflection (0 < β < 1), A/m is the area-to-mass ra-
tio of the spacecraft, a� is the semi-major axis of the sun’s
orbit around earth, r� is the radius of the sun, and P� ≈
4.56× 10−6 N/m2 is the SRP constant at one AU [1, p. 77].

The components of i� in the radial, tangent, and normal
directions, respectively, are obtained by simple rotations

i� = R3(θ)R1(I)R3(Ω)R1(−ε)R3(−λ�) (1, 0, 0)τ

where λ� is the ecliptic longitude of the sun, and ε is the
obliquity of the ecliptic.

Then, calling F = −Fsrp/µ, Kozai’s analytical expres-
sions for perturbations due to SRP [13] are easily recov-
ered from the usual Gauss equations. After averaging over
the mean anomaly, which is done in closed form based on
Eq. (16), we get da/dt = 0, and

de

dt
= (3/4)na2Fη

{
sinω

[
(cos ε− 1) cos(λ� + Ω)

−(cos ε+ 1) cos(λ� − Ω)
]

+ cosω
[
2s sin ε

× sinλ� + c(cos ε+ 1) sin(λ� − Ω)

+c(cos ε− 1) sin(λ� + Ω)
]}

dI

dt
= (3/4)na2(e/η)F cosω

[
s(cos ε+ 1) sin(λ� − Ω)

−2c sin ε sinλ� + s(cos ε− 1) sin(λ� + Ω)
]

dΩ

dt
=

3

4
na2

e

η

1

s
F sinω

[
s(cos ε+ 1) sin(λ� − Ω)

−2c sin ε sinλ� + s(cos ε− 1) sin(λ� + Ω)
]

dω

dt
= −3

4
na2

F

eη

{
sinω

[
(cos ε+ 1) sin(λ� − Ω)

×c+ 2
(
s− e2/s

)
sin ε sinλ� + c(cos ε− 1)

× sin(λ� + Ω)
]

+ η2 cosω
[
(cos ε+ 1)

× cos(λ� − Ω) + (1− cos ε) cos(λ� + Ω)
]}

dM

dt
= n+

3

4
na2

e2 + 1

e
F
{

sinω
[
c(cos ε+ 1)

× sin(λ� − Ω) + c(cos ε− 1) sin(λ� + Ω)

+2s sin ε sinλ�
]

+ cosω
[
(cos ε+ 1)

× cos(λ� − Ω) + (1− cos ε) cos(λ� + Ω)
]}

7.2. Atmospheric drag: Averaged effects

Predicting the atmospheric behavior for the accurate evalua-
tion of drag effects seems naive for the long-term scales of in-
terest in this study. However, the atmospheric drag may domi-
nate over all other perturbations in the case of orbits with low
perigee heights, even to the extent of forcing the satellite’s
de-orbit.

The magnitude of the drag force depends on the local den-
sity of the atmosphere ρ and the cross-sectional area A of the
spacecraft in the direction of motion. The drag force per unit
of mass m is αdrag = − 1

2ndV , where V is velocity of the
spacecraft relative to the atmosphere, of modulus V , we ab-
breviated

nd = ρBV > 0, (19)

and B = (A/m)Cdrag, is the so-called ballistic coefficient,
with the dimensionless drag coefficient Cdrag ranging from
1.5–3.0 for a typical satellite. Note that nd ≡ nd(t).

A reasonable approximation of the relative velocity is
obtained with the assumption that the atmosphere co-rotates
with the earth. Then, from the derivative of a vector in a
rotating frame, we get V = (dr/dt) − ω⊕ × r. We further



take ω⊕ = n⊕k, and compute its projections in the radial,
normal, and bi-normal directions as

ω⊕ = R3(θ)R1(I) (0, 0, n⊕)τ

Then, the velocity components in the radial, normal, and
bi-normal direction relative to a rotating atmosphere are

V = (R,Θ/r, 0)
τ

+ rn⊕ (0,− cos I, cos θ sin I)
τ

where R = ṙ = (Θ/p)e sin f , and Θ = r2θ̇ =
√
µp.

Models giving the atmospheric density are usually com-
plex. Furthermore, since it depends on the solar flux which is
not easily predictable, reliable predictions of the drag effect
are not expected for long-term propagation. Hence, the aim is
to show the effect that the atmospheric drag might have in the
orbit, as opposite from a drag-free mode. Therefore, to speed
evaluation of the semi-analytical propagator, we take advan-
tage of the simplicity of the Harris-Priester density model,
which is implemented with the modifications of [14].

Replacingαdrag into Gauss planetary equations, the long-
term effects are computed after averaging the equations over
the mean anomaly, viz.

da

dt
= − a

η2
1

2π

∫ 2π

0

nd

(
1 + 2e cos f + e2 − n⊕

n
η3c
)

dM

de

dt
=

1

2π

∫ 2π

0

nd

[
δc
(
e+ cos f − e

2
sin2 f

)
− e− cos f

]
dM

dI

dt
= −1

2
s

1

2π

∫ 2π

0

nd δ cos2 θ dM

dΩ

dt
= −1

2

1

2π

∫ 2π

0

nd δ sin θ cos θ dM

dω

dt
= −c dΩ

dt
− 1

2π

∫ 2π

0

nd
e

sin f
[
1− δc

(
1 +

e

2
cos f

)]
dM

dM

dt
= n+

1

2π

∫ 2π

0

nd
e

η

r

a
sin f dM

+
1

2π

∫ 2π

0

nd
η

e
sin f

[
1− δc

(
1 +

e

2
cos f

)]
dM

where the known relation sinu = (r/p)η sin f in Eq. (20),
and the abbreviation δ = (n⊕/n)(r/p)2η3 have been used.

Both the relative velocity with respect to the rotating at-
mosphere V , and the atmospheric density ρ are naturally ex-
pressed as a function of the true anomaly [14], then it happens
that nd ≡ nd(f) from the definition of nd in Eq. (19). Hence,
the quadratures above are conveniently integrated in f rather
than in M using the differential relation in Eq. (13). Besides,
due to the complex representation of the atmospheric density,
these quadratures are evaluated numerically.

8. CONCLUSIONS

HEO propagation is a challenging problem because the differ-
ent causes that have an effect in these kinds of orbits, whose

relative influence may notably vary along the orbit. However,
modern tools and methods allow to approach the problem by
means of analytical methods. Indeed, using perturbation the-
ory we succeeded in the implementation of a fast and efficient
semi-analytical propagator which is able to capture the main
frequencies of the HEO orbital motion over large spans. In
particular, we used the Lie transforms method, which is stan-
dard these days in the construction of perturbation theories.
This method is specifically designed for automatic computa-
tion by machine, and can be easily programmed with modern,
commercial, general purpose software.
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k m = 2 m = 4 m = 6 m = 8

0 1 2 + 3e2 8 + 40e2 + 15e4 3(16 + 168e2 + 210e4 + 35e6)

2 1 6 + 3e2 48 + 80e2 + 15e4

4 1 10 + 3e2

6 1

k m = 5 m = 7 m = 9

1 4 + 3e2 3(8 + 20e2 + 5e4) 3(64 + 336e2 + 280e4 + 35e6)

3 1 8 + 3e2 5(16 + 20e2 + 3e4)

5 1 12 + 3e2

7 1

k m = 10

0 3(128 + 2304e2 + 6048e4 + 3360e6 + 315e8)
2 15(32 + 112e2 + 70e4 + 7e6)

4 15(8 + 8e2 + e4)

6 14 + 3e2

8 1

Table 1. Eccentricity polynomials Qm,k in Eq. (14).

k m = 1 m = 2 m = 3

0 1
4

(
3c2 − 1

)
− 3

128

(
35c4 − 30c2 + 3

)
5

2048

(
231c6 − 315c4 + 105c2 − 5

)
1 − 15

64

(
7c2 − 1

)
175
2048

(
33c4 − 18c2 + 1

)
2 315

4096

(
11c2 − 1

)
m = 4

0 − 35
786432

(
6435c8 − 12012c6 + 6930c4 − 1260c2 + 35

)
1 − 2205

131072

(
143c6 − 143c4 + 33c2 − 1

)
2 − 4851

131072

(
65c4 − 26c2 + 1

)
3 − 3003

131072

(
15c2 − 1

)
m = 5

0 21
8388608

(
46189c10 − 109395c8 + 90090c6 − 30030c4 + 3465c2 − 63

)
1 693

2097152

(
4199c8 − 6188c6 + 2730c4 − 364c2 + 7

)
2 9009

1048576

(
323c6 − 255c4 + 45c2 − 1

)
3 19305

4194304

(
323c4 − 102c2 + 3

)
4 109395

16777216

(
19c2 − 1

)
Table 2. Even inclination polynomials B2m,2k in Eq. (14).

k m = 1 m = 2 m = 3

0 − 3
8

(
5c2 − 1

)
15
128

(
21c4 − 14c2 + 1

)
− 35

8192

(
429c6 − 495c4 + 135c2 − 5

)
1 35

256

(
9c2 − 1

)
− 315

16384

(
143c4 − 66c2 + 3

)
2 − 693

16384

(
13c2 − 1

)
m = 4

0 105
262144

(
2431c8 − 4004c6 + 2002c4 − 308c2 + 7

)
1 1617

131072

(
221c6 − 195c4 + 39c2 − 1

)
2 3003

131072

(
85c4 − 30c2 + 1

)
3 6435

524288

(
17c2 − 1

)
Table 3. Odd inclination polynomials B2m+1,2k+1 in Eq. (14).



m j = 0 1 2 3

2 3(2 + 3e2) −15e2

3 e(4 + 3e2) e3

4 (8 + 40e2 + 15e4) e2(2 + e2) e4

5 e(8 + 20e2 + 5e4) e3(8 + 3e2) e5

6 16 + 168e2 + 210e4 + 35e6 48e2 + 80e4 + 15e6 10e4 + 3e6 e6

Table 4. Eccentricity polynomials Am,j in Eq. (17).

P2,j,l P3,j,l

l j = 0 j = 1 j = 0 j = 1

0 1
48 (3c2 − 1) − 1

16s
2 − 15

128 (5c2 − 1)s − 175
128s

3

±1 1
8cs

1
8χs − 15

512χ(15c2 ∓ 10c− 1) − 525
512χs

2

±2 − 1
32s

2 1
32χ

2 75
256χ(3c∓ 1)s − 525

256χ
2s

±3 75
512χs

2 175
512χ

3

Table 5. Inclination polynomials Pm,j,l in Eq. (17) (χ = c± 1).

l j = 0 j = 1 j = 2

0 − 3
4096 (35c4 − 30c2 + 3) − 105

1024 (7c2 − 1)s2 − 2205
4096s

4

±1 15
1024c(3− 7c2)s 105

512χ(14c2 ∓ 7c− 1)s 2205
1024χs

3

±2 15
1024 (7c2 − 1)s2 105

256χ
2(7c2 ∓ 7c+ 1) 2205

1024χ
2s2

±3 105
1024cs

3 735
512χ

2(2c∓ 1)s − 2205
1024χ

3s

±4 − 105
2048s

4 − 735
512χ

2s2 − 2205
2048χ

4

Table 6. Inclination polynomials P4,j,l in Eq. (17) (χ = c± 1).

l j = 0 j = 1 j = 2

0 105
8192

(
21c4 − 14c2 + 1

)
s 735

16384 (9c2 − 1)s3 14553
16384s

5

±1 105
16384χ(105c4 ∓ 84c3 − 42c2 ± 28c+ 1) 2205

32768χ(15c2 ∓ 6c− 1)s2 72765
32768χs

4

±2 − 735
4096χ(15c3 ∓ 9c2 − 3c± 1)s 2205

8192χ
2(15c2 ∓ 12c+ 1)s 72765

8192 χ
2s3

±3 735
32768χ(15c2 ∓ 6c− 1)s2 735

65536χ
3(3c∓ 1)(15c∓ 13) 72765

65536χ
3s2

±4 − 2205
16384χ(5c∓ 1)s3 − 6615

32768χ
3(5c∓ 3)s 72765

32768χ
4s

±5 2205
32768χs

4 6615
65536χ

3s2 14553
65536χ

5

Table 7. Inclination polynomials P5,j,l in Eq. (17) (χ = c± 1).

l j = 0 j = 2

0 − 5
65536 (231c6 − 315c4 + 105c2 − 5) − 2079

65536 (11c2 − 1)s4

±1 − 105
32768c(33c4 − 30c2 + 5)s 2079

32768χ(33c2 ∓ 11c− 2)s3

±2 − 525
262144 (33c4 − 18c2 + 1)s2 − 10395

262144χ
2(33c2 ∓ 22c+ 1)s2

±3 − 525
65536c(11c2 − 3)s3 10395

65536χ
3(11c2 ∓ 11c+ 2)s

±4 315
32768 (1− 11c2)s4 − 2079

32768χ
4(33c2 ∓ 44c+ 13)

±5 − 3465
65536cs

5 − 22869
65536χ

4(3c∓ 2)s

±6 1155
262144s

6 22869
262144χ

4s2

Table 8. Inclination polynomials P6,j,l in Eq. (17) (χ = c± 1).



l j = 3 j = 1

0 − 99099
131072s

6 − 315
131072 (33c4 − 18c2 + 1)s2

±1 297297
65536 χs

5 315
65536χ(99c4 ∓ 66c3 − 36c2 ± 18c+ 1)s

±2 − 1486485
524288 χ

2s4 − 315
524288χ

2(495c4 ∓ 660c3 + 90c2 ± 108c− 17)

±3 495495
131072χ

3s3 − 945
131072χ

2(55c3 ∓ 55c2 + 5c± 3)s

±4 − 297297
65536 χ

4s2 − 945
65536χ

2(33c2 ∓ 22c+ 1)s2

±5 297297
131072χ

5s 10395
131072 (1∓ 3c)χ2s3

±6 99099
524288χ

6 10395
524288χ

2s4

Table 9. Inclination polynomials P6,j,l in Eq. (17) (χ = c± 1).

m l Sm,l Tm,l
2 0 −1 + 3w2 0

±1 −v w ±uw
±2 u2 − v2 ±2u v

3 0 0 w(5w2 − 3)
±1 ±u(5w2 − 1) v(5w2 − 1)
±2 ±2uvw w(v2 − u2)
±3 ±u(u2 − 3v2) −v(v2 − 3u2)

4 0 3− 30w2 + 35w4 0
±1 vw(3− 7w2) ±uw (−3 + 7w2)
±2 1

2 (u2 − v2)(−1 + 7w2) ±uv(−1 + 7w2)
±3 v(−3u2 + v2)w ±u(u2 − 3v2)w
±4 1

4 (u4 − 6u2v2 + v4) ±uv(u2 − v2)
5 0 0 w (15− 70w2 + 63w4)

±1 ±u(1− 14w2 + 21w4) v(1− 14w2 + 21w4)
±2 ±2uvw(−1 + 3w2) (u2 − v2)w(1− 3w2)
±3 ±u(u2 − 3v2)(1− 9w2) v(−3u2 + v2)(−1 + 9w2)
±4 ±4uv(−u2 + v2)w (u4 − 6u2v2 + v4)w
±5 ±u(u4 − 10u2v2 + 5v4) v(5u4 − 10u2v2 + v4)

6 0 5− 105w2 + 315w4 − 231w6 0
±1 v(5− 30w2 + 33w4)w ∓u(5− 30w2 + 33w4)w
±2 (u2 − v2)(1− 18w2 + 33w4) ±2uv(1− 18w2 + 33w4)
±3 v(3u2 − v2)(3− 11w2)w ±u(u2 − 3v2)(−3 + 11w2)w
±4 1

4 (1− 11w2)(u4 − 6u2v2 + v4) ±(1− 11w2)uv(u2 − v2)
±5 v(5u4 − 10u2v2 + v4)w ∓u(u4 − 10u2v2 + 5v4)w
±6 (v2 − u2)(u4 − 14u2v2 + v4) ∓2(3u5 − 10u3v2 + 3uv4)v

Table 10. Third-body direction polynomials in Eq. (17); u = x?/r?, v = y?/r?, w = z?/r?.
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