

Low Thrust Trajectory Design and Optimization: Case Study Of A Lunar CubeSat Mission

Dr. Ravishankar Mathur

6th International Conference on Astrodynamics Tools and Techniques (ICATT) 14-17 March 2016

> Emergent Space Technologies, Inc. 6411 Ivy Lane, Suite 303 · Greenbelt MD, 20770 · - 301 345-1535 · FAX - 301 345-1553 http://www.emergentspace.com

Introduction: CubeQuest Challenge

- A NASA Centennial Challenge, initiated Nov 2014
- Winning 6U CubeSats are offered a launch on the 2018 Exploration Mission 1 (EM-1) as secondary payload
- CubeSat disposal trajectory performs lunar flyby, gains enough energy to escape Earth-Moon system
- 2 possible design goals, associated prize purse
 - Lunar Derby: max transmitted data from lunar orbit
 - Deep-Space Derby: max transmitted data from 4M km
- EM-1 safety requirements dictate no volatile propulsion for CubeSats: low-thrust propulsion used

CubeSat Disposal Trajectory

- CubeSat disposed onto lunar-flyby trajectory
- Escapes Earth-Moon system \rightarrow heliocentric trajectory
- Use low thrust to enter into lunar orbit

Earth-Moon-Sun System

- Reduce CubeSat's speed so Moon can "move out of the way"
- Other solution families exist, e.g. with multiple Earth flybys
- Trade-offs between various families of solutions: ΔV, Earth flyby (Van Allen Belts, satellite constellations), tolerance to maneuver failures

Lunar Arrival: Distant Retrograde Orbit

Connecting Trajectories: Impulsive ΔV

- Relatively small impulse from DRO, back-prop
 - **Stable manifold of DRO**, arrives from Sun-Earth L1 region
- Good candidate for low-energy transfer to Moon

Connecting Trajectories: Impulsive ΔV

- Insert trajectory arc to connect Earth-departure and lunar-arrival trajectories
- **Optimize ΔV components to match patch-point position**
- Lunar-inbound ΔV computed to match lunar-arrival velocity
- **DRO-arrival ΔV fixed to match DRO insertion requirements**

Spiral-Down: Impulsive ΔV

- Target orbit: radius < 10,000 km , altitude > 200 km
- Strategy: coast to periapse $\rightarrow \Delta V = 10$ m/s antivelocity
- Total Cost = 500 m/s ... expensive, but very safe
 - Intermediate (post-impulse) orbits still stay around Moon for weeks, allowing time for corrections to propulsion failures

Impulsive to Finite Burn Conversion

- GMAT Spacecraft parameters
 - Mass m = 14 kg
 - Thrust $T = 1 \text{ mN} \rightarrow 1/10^{\text{th}}$ weight of notebook paper sheet!
 - SRP Area A = 1 m^2
 - SRP C_r = 1.7
- GMAT Simulation parameters
 - **Sun, Earth, Moon point-mass ephemeris models**
 - SRP included
 - Near Earth: EGM-96 100x100
 - Near Moon: LP-165 100x100
- $\Delta V \rightarrow$ Finite Burn with force-momentum relation
 - $\Delta t = m |\Delta V| / T$ (centered about $t_{nominal}$)
 - $\Box \quad \mathbf{u} = \Delta \mathbf{V} / |\Delta \mathbf{V}|$

Impulsive to Finite-Burn Conversion

- Optimize using GMAT with VF13AD plug-in
- 7 variables: $\Delta t_1 \alpha_1 \beta_1 t_2 \Delta t_2 \alpha_2 \beta_2$ (burn times & directions)
- 6 constraints: match position & velocity at patch point
- Cost: $\Delta t_1 + \Delta t_2 \rightarrow Many local minima!$

Finite-Burn Spiral Down

- Thrust to maintain vertical x-axis crossing
 - Utilize symmetry property of CR3BP
- Safe orbit that stays near Moon if thrusters fail

Finite-Burn Trajectory Cost

Burn Name	Duration [days]	$ \Delta V $ [m/s]
Pre-Flyby	2.3	14
L1	35.0	216
DRO	7.0	43
Spiral-Down (combined)	113.4	700
Total Burn Duration	157.7	973 m/s
Total Mission Duration	322.5 (<11mo)	-

- CubeSat Disposal: Dec 15, 2017
- Lunar Orbit Arrival: Nov 3, 2018
- 6-week buffer before end of CubeQuest competition
 - □ Allows time for on-orbit CubeQuest data transfer challenge
 → Most amount of data transferred on-orbit

Conclusions & Future Work

- A feasible, fault-tolerant, partially-optimized Earth-Moon transfer trajectory was presented
- The first burn is critical: failed burn \rightarrow no lunar orbit
 - Alternately, could aim for Deep-Space Derby at 4M km
- Fault-tolerance achieved in exchange for time
 - Split up long near-L1 burn to allow for intermediate tracking
 - Use DRO at lunar arrival before spiral-down burns
- Free lunar-arrival parameters to improve ΔV & time
 - DRO size, arrival burn duration and direction
 - Possible because target lunar orbit is not prescribed
- **Compute comprehensive ΔV budget**
 - Thrust, pointing, SRP errors
 - Launch window analysis

Thank you for your attention!

