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ABSTRACT

The optimization of low-thrust trajectories is a difficult task.
While techniques such as Sims-Flanagan transcription give
good results for short transfer arcs with at most a few revo-
lutions, solving the low-thrust problem for orbits with large
numbers of revolutions is much more difficult. Adding to the
difficulty of the problem is that typically such orbits are for-
mulated as a multi-objective optimization problem, providing
a trade-off between fuel consumption and flight time.

In this work we propose to leverage the power of mod-
ern GPU processors to implement a massively parallel evolu-
tionary optimization algorithm. Modern GPUs are capable of
running thousands of computation threads in parallel, allow-
ing for very efficient evaluation of the fitness function over a
large population. A core component of this algorithm is a fast
massively parallel numerical integrator capable of propagat-
ing thousands of initial conditions in parallel on the GPU.

Several evolutionary optimization algorithms are ana-
lyzed for their suitability for large population size. An ex-
ample of how this technique can be applied to low-thrust
optimization in the targeting of the Moon is given.

Index Terms— low thrust, global optimization, GPU,
evolutionary, parallel, ODE integration

1. INTRODUCTION

Techniques such as Sims-Flanagan transcription are com-
monly employed in the optimization of low-thrust trajecto-
ries. They are fast and give good results for short transfer arcs
with at most a few revolutions. However, solving the low-
thrust problem for orbits with large numbers of revolutions is
much more complex. Part of this complexity is that typically
such trajectory optimization problems are formulated as a
multi-objective problems, providing a trade-off between fuel
consumption and flight time.

Traditional algorithms to solve this kind of problem have
been developed considering the typical computing architec-
ture of (potentially multicore) Central Processing Unit (CPU)
machines. In these systems, a small number of computation-
ally powerful cores with fast random memory access due to

several layers of memory caches is available. With the ad-
vent of modern GPUs a huge number of Arithmetic Logic
Units (ALU) per card (typically on the order of thousands)
are made available at costs comparable to those of a single
high-end multicore CPU [1]. However, the large increase in
raw arithmetic computing power comes at the cost of limited
performance of each core compared to traditional CPU cores
mostly due to the lack of the sophisticated hardware caches
present in CPUs.

This GPU architecture is not suitable to run different,
complex subprograms on each core. Instead, the hardware
is optimized for what is referred to as the Single Instruc-
tion Multiple Threads (SIMT) parallel processing paradigm
[2], which applies the same operation to different input data
in parallel. This requires a different approach in algorithm
design to maximize the impact of those new hardware capa-
bilities in various fields of scientific computing [3].

Early attempts have been made at using GPUs in global
optimization of docking dynamics of spacecraft [4]. More re-
cently, GPU programming has found its way into many other
aerospace related research topics. GPUs have been used for
the parallel computation of trajectories to enable fast Monte-
Carlo simulations [5], uncertainty propagation [6], as well as
non-linear filtering [7] and fast tree-search algorithms [8].

In this work we propose a massively parallel evolutionary
optimization algorithm using the GPU to for massively paral-
lel evaluation of the fitness function over a large population.
This fitness function requires the propagation of a spacecraft
state over many revolutions. Thus a core component of this
algorithm is a numerical integrator implementation capable of
propagating thousands of initial conditions in parallel on the
GPU.

We chose the standardized OpenCL package [9] for the
GPU programming. The OpenCL heterogeneous computing
platform provides a platform agnostic C like programming
language along with compilers for most current accelerator
cards such as those by NVidia, Intel and ATI. Furthermore, it
provides libraries for both the host side (CPU) as well as the
client side (GPU) to facilitate common tasks in heterogeneous
programming in a hardware independent manner. Interfacing
the OpenCL code for GPU fitness function evaluation with
the Python language allows for an easy to use interface to the



otherwise somewhat cumbersome C code while maintaining
the high performance required in the critical code paths.

We consider several evolutionary optimization algorithms
for their suitability for large population size. In order to be
implemented efficiently on a GPU, it is necessary for the al-
gorithms to have a high level of concurrency and a complexity
scaling well with the population size.

Lastly, we show an example of how this implementation
can be applied to low-thrust optimization in the targeting of
celestial bodies, such as the Moon. While we perform the
propagation in a simple two-body model, due to its numerical
nature in principle the propagation can also be performed in
more complete models such as the circular restricted three
body problem.

The remainder of this paper is structured as follows. In
Section 2 we introduce the GPU based Runge-Kutta integra-
tor implementation at the core of the fitness function. We then
proceed to give an overview of various implementations of
evolutionary optimizers in Section 3. Following this we illus-
trate the concept by optimizing a simple low thrust example
in Section 4. We finish with some conclusions in Section 5.

2. GPU INTEGRATOR

In principle, ODE integration is an inherently sequential pro-
cess. The propagation of a single state almost never benefits
from the implementation of a GPU. This is because in virtu-
ally all integration schemes a single step corresponds to the
evaluation of the right hand side followed by the calculation
of a new intermediate state which is used to evaluate the right
hand side again.

The highly parallel execution on a GPU comes into play
when propagating a set of initial conditions instead of s single
state. In that case, all operations of the integrator can be per-
formed on all initial states at once, propagating at the same
time the full set of initial conditions.

2.1. Implementation

We chose to implement an arbitrary Runge-Kutta integration
scheme with automatic stepsize control such as the Runge-
Kutta-Fehlberg 4/5 [10] or a corresponding 7/8 order method
[11]. Such implementations have been described in the lit-
erature before [12, Chapters 7,8]. However, we found previ-
ous implementations not very well adapted to the computa-
tion paradigm of GPUs, leading to poor relative performance
when compared with CPU based implementations. The im-
plementation in [12, Chapters 8], for example, finds only a
speedup of a factor of about two when compared with parallel
execution on a quad-core CPU. Our implementation, instead,
is carefully tuned to GPUs, and tested extensively in particu-
lar on the AMD Graphics Core Next (GCN) architecture [2].

One particularly important fact in this context is the well
known observation that branching of any sort in GPU code is

very costly and should be avoided [13]. In a naive implemen-
tation of RK integration schemes with step size control, many
different conditions are constantly checked to determine if
the solution is within the user specified error bounds, step-
size limits and propagation time bounds are met, etc. Also
loops result in potentially costly branching instructions if the
compiler cannot automatically unroll them.

We avoided these pitfalls by optimizing our code to use
specific GPU commands instead. Of particular use in this
context was the conditional assignment operator (called se-
lect() in OpenCL), which selects between two values based
on the value of a third parameter. On GPUs this operator is
implemented in the instruction set of the processor and hence
very fast. It does not require any branching, and can replace
many instances of if statements. Further optimizations were
achieved by manually unrolling loops in the code. While the
AMD OpenCL compiler has flags to force it to unroll loops
automatically, we found that some loops that could be un-
rolled manually were not automatically unrolled by the com-
piler.

With these optimizations, we were able to replace all if
statements in the code and all but one loop. This has been
verified by checking the resulting machine code on the AMD
GCN Hawaii platform (used on our AMD W8100 card) using
the AMD Code XL profiling tool [14]. The speedup due to
these optimizations was impressive, on the order of a factor
of 5 to 10 for simple ODEs such as the Lorenz equation.

2.2. Performance

In the following, we perform some simple comparisons be-
tween our GPU integrator and CPU based integration for large
numbers of initial conditions. The comparisons are carried
out on a machine with a 4 core (8 hyperthreads) Xeon E5-
1620 V3 at 3.5 GHz with 16 GB of RAM and an AMD Fire-
Pro W8100 (2560 stream processors) at 850 MHz with 4 GB
RAM. All computations are preformed using double preci-
sion floating point numbers, which in the latest generation of
high-end GPUs are now well supported also on those devices
at high speed.

In order to compare the performance of the integrator be-
tween CPUs and GPUs, we used a feature of the OpenCL
environment. By simply switching the computation platform,
it is possible to run the exact same code once on the CPU and
once on the GPU. In case of the CPU the code will automati-
cally make use of all available cores as well as the same auto-
vectorization features used to generate the GPU code. This al-
lows for a reasonable comparison between the two platforms
without having to recode the entire test case. The AMDAPP
OpenCL environment we used on our Windows machine uses
a modified version of the LLVM based Clang compiler to
compile the OpenCL code for the selected platform. Moni-
toring system load during execution confirms that all 8 avail-
able logical cores (Intel quad-core with hyper-threading) of
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Fig. 1. Ratio of CPU execution time over GPU execution
time as a function of number of initial conditions for different
ODEs.

the CPU are fully loaded during CPU execution.
The first test is the simple three dimensional Lorenz ODE.

This ODE has a particularly simple right hand side which is
not very computationally intensive to evaluate. This ODE
mostly tests the overhead introduced by the integrator imple-
mentation as those operations largely outnumber the compu-
tational effort in the evaluation of the right hand side of the
ODE. More relevant for the application to low thrust propul-
sion is the integration of the spacecraft motion in two-body
dynamics. In the second test case, we integrate instead the
slightly more complex two body dynamics (in Cartesian co-
ordinates) with constant tangential thrust. Here both the di-
mensionality as well as the computational complexity of the
right hand side are increased.

In Figure 1 we compare the ratio of the computational
times for parallel integrations performed on the CPU and the
GPU in both test cases as a function of the number of initial
conditions. In all cases, the exact same initial and final condi-
tions are being used. As expected, for low numbers of initial
conditions (Figure 1 (a)), the CPU is significantly faster due
to its 4 times faster clock speed and 8 logical cores as well as
lower overhead in setting up the computation. Considering,

for example, the case of the Lorenz system, in the extreme
case of just one single initial condition, the CPU is about 100
times faster than the GPU (1.25 ms compared to 128 ms).
However, already at 30 initial conditions the GPU is only 10
times slower (13.7 ms vs. 129 ms). At about 400 initial con-
ditions, the GPU comes in about even with the CPU. For ini-
tial condition sizes past that, the GPU starts to beat the GPU.
As seen in Figure 1 (b), the linear trend actually continues to
numbers of initial conditions around 10000, from where on
out the GPU remains about 12.5 times faster than the CPU.

The situation for the propagation of a spacecraft state in
the two-body problem looks similar. In fact for low numbers
of parallel initial conditions up to about 1000, the trend is the
same (Figure 1 (a)). Also for large numbers of initial condi-
tions (Figure 1 (b)) the behavior is qualitatively the same. The
maximum performance gain compared to CPU computations
in this case is about 11, reached at 10000 and 20000 initial
conditions.

It is interesting to observe that at 10000 initial conditions
there is a significant drop in the speed-up for both ODEs. Af-
ter the drop, the performance then keeps increasing again. We
attribute this drop in performance to the fact that our partic-
ular GPU has 40 compute units, each of which is equipped
with 4 SIMD units which are scheduled with a wavefront of
64 threads each. At full occupation this yields a maximum
number of 40 ·4 ·64 = 10240 computations scheduled in par-
allel. As our problem is processor limited, the most efficient
use of GPU resources occurs at full GPU occupation.

These results indicate that the parallel propagation of
spacecraft states on the GPU should be possible and yield a
sizeable speedup over comparable integration performed on a
serial CPU. The maximum performance increase on our par-
ticular GPU is reached when the number of initial conditions
is about 10000, but already at much lower numbers of initial
conditions, such as 1000, is it possible to benefit noticeably
from GPU computation.

3. OPTIMIZATION ALGORITHMS

In the following Section, we investigate various algorithms
for their suitability for large population sizes as well as other
aspects that affect their performance in a massively parallel
environment.

One common feature of almost all of these algorithms is
that typical implementations of these algorithm are steady-
state, i.e. the mutations are performed sequentially and any
changes to the population immediately take effect before con-
tinuing with the next individual. In order to parallelize these
algorithms, it is necessary to make the algorithm generational.
In that way all mutations can be evaluated in parallel, yielding
a new population in one step. In general, this makes the algo-
rithms less performant as improvements during the mutations
only feed back into the algorithm after one generation.



3.1. Algorithms

We considered the following algorithms. The presentation of
the algorithms is kept very brief, for details about each algo-
rithm the reader is referred to the scientific literature in the
references.

3.1.1. Particle Swarm Optimization Algorithm

The Particle Swarm Optimization Algorithm is an optimiza-
tion method based on swarm intelligence. Each particle has a
position vectorXi and velocity vector Vi as well as two stored
positions Pi and Si. The first variable Pi the position that has
the greatest fitness out of all the positions particle i has vis-
ited. The variable Si is usually the best position the swarm
has visited, but in order to reduce the chance of convergence
in a local minimum each particle is only allowed to communi-
cate with a few other particles. In this case a ring topology is
used. The Si variable is thus the best position of the particle i
or its nearest neighbours.

A canonical Particle Swarm Optimizer implementation
was used, thus giving an update equation of

V t+1
i = α

(
V t
i + φ1U1(Pi −Xt

i ) + φ2U2(Si −Xt
i )
)

where

α =
2k

|2− (φ1 + φ2)−
√
(φ1 + φ2)2 + 4(φ1 + φ2)|

with the values φ1 = φ2 = 2.05 and k = 1. Both U1 and U2

denotes vectors drawn from a uniformly random distribution
between 0 and 1. Note that a maximum velocity of 0.5L is
imposed, where L is the length of the bounding box of the
problem.

The position of each particle is then updated as

Xt+1
i = Xt

i + V t+1
i

3.1.2. Simple Genetic Algorithm (SGA)

There are plenty of variations of genetic algorithms. One of
the more common, and the one we consider here, seems to
be the variant with roulette wheel selection, elitism and expo-
nential crossover.

First, the fitness of each of the individuals in the popula-
tion is evaluated. To create the population of the next genera-
tion, for each new individual 2 parents are chosen at random
from the old population with the probability of a parent being
picked being proportional to its fitness. This is referred to as
roulette wheel selection.

In order to combine the two parents, an exponential
crossover is used. This means that the genes are copied
from one of the parents to the child, one by one, but with each
gene there is a pcr probability that the parent from whom the
genes are copied is exchanged for the other parent. We use a
value of pcr = 0.05.

In the next step, each of the newly minted individuals are
mutated. This means that for each of the genes there is a
pmr chance that the gene is mutated, where pmr = 0.02 is a
tunable parameter. If a mutation takes place, cmrε is added
to the value of the gene, where cmr = 0.1 is another tunable
parameter and ε is drawn from a normal distribution.

Lastly, elitism means that the best Nel individuals from
the previous generation are always passed on, un-changed, to
the next generation.

3.1.3. Self-Adaptive Differential Evolution (JDE)

The classical differential evolution algorithm takes 2 parame-
ters p and f . For each new generation, the individuals of the
existing population are updated according to the following
rules: First, three random, but distinct, individuals A,B,C
are selected from the previous generation. A new individ-
ual Y is created from these three individuals according to
Y = A + f(B − C) where f is a tunable parameter. Such
a Y will be created for each individual X in the population,
and these will crossover in order to create a new trial individ-
ual Z. In this case an exponential crossover is applied, which
means that a random point q is chosen uniformly such that
0 6 q < G and q ∈ N, where G is the number of genes. All
genes from q to the end-point of the crossover qe are copied
from Y into Z. All genes after the end point are copied from
X into Z. The endpoint qe is defined as q+η mod D, where
η is a random integer drawn from a geometric distribution
with intensity parameter p. If the fitness of Z is greater than
that of X , Z replaces X .

In JDE each individual contains the original gene as well
as values for f and p. Before computing the next generation
there is a 10% chance that either of them are mutated. During
mutation, fi is drawn randomly from a uniform distribution
on [0.1, 1] while pi is drawn from a uniform distribution on
[0, 1]. These new values are then used in the computation of
the next generation.

3.2. Analysis

Denoting by N the size of the population, T the number of
generations and G the length of the gene, all of these algo-
rithms have a complexity of O(NGT ). Since this is linear in
N , at least on the algorithm level they are well suited for large
population sizes.

To analyze more closely the dependence of the popula-
tion size on the convergence of each algorithm, we selected
four commonly used test problems, Ackley, Rastrigin, Rosen-
brock, and Schwefel, at 15 dimensions. For each of these,
we define a convergence limit for the solution to be consid-
ered converged. Each algorithm (using the implementation in
PaGMO [15]) is run 10 times. We then calculate the average
number of generations needed to obtain a convergent solution.
If the solution does not converge after 15, 000 generations, the



Ackley Problem
Population
Size = 10

Population
Size = 100

Population
Size = 500

SGA 20350 10620 10010
JDE 2216.7 1850 1780
PSO 2442.9 2080 2010

Rastrigin Problem
Population
Size = 10

Population
Size = 100

Population
Size = 500

SGA 16140 7090 7480
JDE 3325 2810 2760
PSO - - -

Rosenbrock Problem
Population
Size = 10

Population
Size = 100

Population
Size = 500

SGA 6800 8350 10887.5
JDE 2330 1770 1660
PSO 4760 1420 1160

Schwefel Problem
Population
Size = 10

Population
Size = 100

Population
Size = 500

SGA - - 3925
JDE 2550 1950 1880
PSO - - -

Table 1. Mean number of generations required until the con-
vergence criteria of the respective problem is met. A dash
indicates that none of the runs converged.

method is considered non-convergent and is not counted for
the averaging.

Note that at this point we are not yet considering the com-
putational cost of increasing the population size. Instead, we
simply want to determine if a larger population size, assuming
for now that it comes at zero additional cost, is advantageous
for the algorithm.

The result is shown in Table 1. As can be seen, the number
of generations required to arrive within the specified tolerance
of the solution generally decreases with the population size.
However, the difference between 100 and 500 individuals is
not very pronounced, indicating that in our test cases an in-
crease in the population size generally does not translate into
faster convergence.

A surprising exception seems to be the genetic algorithm
(GA), which actually performs worse with larger population
size for the Rosenbrock test function. This is quite counter-
intuitive as theoretically the probability of finding the opti-
mum increases with the population size. At the moment we
cannot explain this behavior.

From this analysis we decided to select the JDE algorithm
as the candidate for our GPU based optimization. Further-

more, it appears from these simple tests that, at least for single
objective optimization, a larger population size is not neces-
sarily beneficial for convergence speed. However, in multi-
objective optimization more individuals allow a better cover-
age of the Pareto front. Another area where large populations
are relevant in practice are island models, in which many pop-
ulations are evolved in parallel with occasional migrations be-
tween the islands [16].

4. EXAMPLE

Just to illustrate the feasibility of the proposed method, we
implemented very simple dynamics of a spacecraft with low
thrust propulsion. The dynamics are formulated in Cartesian
coordinates, with a fixed thrust direction along the tangential
direction. The thrust magnitude is governed by a 20th order
Bernstein polynomial P (f) as a function of the true anomaly
f . The thrust from the polynomial P (f) is then truncated to
the interval [0, Tmax] where Tmax is the maximum thrust.

A spacecraft with a low thrust propulsion engine with
maximum thrust of Tmax = 0.1 N is initially in a circular
LEO orbit at 6, 778.14 km. With an initial chemical impulse
of 3 km/s the spacecraft then has to spiral out to the Moon’s
orbit (assumed as circular at 380, 000 km) as quickly as pos-
sible. Since the direction and time of the initial impulse can
be chosen arbitrarily, we can ignore the phasing of the Moon
and the spacecraft for this very simple application.

The optimization is performed on the time of flight re-
quired to reach a position 380, 000 km from Earth. The op-
timization parameters are the Bernstein coefficients ai of the
thrust polynomial P . The optimization algorithm we used is
JDE with a population size of 400 individuals computed on
the GPU.

This is a rather simple problem to optimize and hence
the optimizer converges fairly quickly to a solution. Figure
2 shows the evolution of the orbit and the thrust profile. The
best solution after 6 generations has a flight time of 359.7
days.

5. CONCLUSIONS

We demonstrated that efficient GPU implementation of an ef-
ficient numerical ODE integrator allows for typically compu-
tationally intensive fitness functions, such as those requiring
numerical integration, to benefit significantly from massively
parallel GPU execution. This enables the parallel evaluation
of the fitness of thousands of individuals in parallel with min-
imal computational cost. These new possibilities have the po-
tential to provide significant speed-ups compared to sequen-
tial CPU implementations.

The feasibility of the proposed method is illustrated by a
very simple example, showing convergence of the JDE algo-
rithm implemented with parallelized fitness evaluation on the
GPU.



Fig. 2. Evolution of the best orbit over 6 generations (from top to bottom).



For classical single-objective optimization of some com-
mon test problems with commonly used evolutionary algo-
rithms evidence suggests that larger population size does not
automatically improve convergence. However, it may be pos-
sible to . Furthermore, in multi-objective problems it is ex-
pected that larger population size yields better quality results
by providing increased coverage of the pareto front of the so-
lution.

Further research is therefore required to identify evo-
lutionary algorithms that can benefit from large population
sizes. This may include different algorithms or techniques
such as parallel execution of several instances of a particu-
lar algorithm with successive migration as in the case of an
island structure in an archipelago.
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