
HYBRID SGP4: TOOLS AND METHODS
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ABSTRACT

Two-Line Elements (TLEs) continue to be the sole public
source of orbiter observations. The accuracy of TLE propaga-
tions through the Simplified General Perturbations-4 (SGP4)
software decreases dramatically as the propagation horizon
increases, and thus the period of validity of TLEs is very lim-
ited. As a result, TLEs are gradually becoming insufficient for
the growing demands of Space Situational Awareness (SSA).
We propose a technique, based on the hybrid methodology,
aimed at extending TLEs validity with minimal changes to
the current TLE-SGP4 system. It requires the distribution of
hybrid TLEs, HTLEs, which encapsulate the standard TLE
and the model of its propagation error. The validity extension
can be accomplished by processing HTLEs through the hy-
brid SGP4 propagator, HSGP4, which comprises the standard
SGP4 and an error corrector.

Index Terms— Artificial satellite theory, orbit propaga-
tor, hybrid perturbation method, SGP4, TLE, SSA

1. INTRODUCTION

In the context of Space Situational Awareness (SSA), a grow-
ing catalog of thousands of objects requires fast and accu-
rate propagations in order to compute collision probabilities.
The sole universal source of observations for the SSA com-
munity is distributed as Two-Line Elements (TLEs),1 which
are generated as mean elements based on the Kozai mean mo-
tion.1 The propagation of TLEs needs to be done through
the Simplified General Perturbations-4 (SGP4) software,2, 3

which is the propagator specially adapted to TLE specifica-
tions, although it only considers the main perturbing effects.
Nevertheless, no other propagator is recommended to be used
with TLEs. In addition, since TLEs are based on mean el-
ements instead of osculating elements, the associated uncer-
tainty causes a rapid loss of accuracy, and therefore a very
reduced propagation horizon. As a result, the current system
based on TLEs and SGP4 is becoming insufficient for SSA
growing demands.

We propose a non-intrusive enhancement of TLEs and
SGP4: hybrid TLEs, HTLEs, and hybrid SGP4, HSGP4. The
improvement is based on hybrid propagation, which requires
the modeling of the error associated to the SGP4 propagation

1http://www.space-track.org/

of a TLE during an initial control interval, and its estimation
at any future instant in order to be used as a correction to the
SGP4 generated ephemeris. This technique leads to a clear
extension of the validity of TLEs for accurate propagations.

In order to implement this methodology, the HTLE dis-
tributor would have to model each orbiter’s error by making
use of osculating elements, so that some model parameters
could be included in HTLEs. Accordingly, the end user would
simply have to use the HSGP4 propagator, which performs a
standard SGP4 propagation followed by an error correction
based on the model that has been encapsulated in the HTLE.

The impact of the proposed strategy on the efficiency of
the process would be very reduced. On the one hand, the in-
formation to be broadcast would be increased by just a few
additional parameters. On the other hand, the computational
overhead would also be small, because only a few basic oper-
ations would be necessary both in the HTLE distributor and
in the end user sides.

The outline of this paper starts with a brief description of
the hybrid methodology for orbit propagation in Section 2.
Next, Section 3 presents the process of generating an HTLE,
which requires the determination of SGP4 propagation er-
ror, Subsection 3.1, its modeling through the Holt-Winters
method, Subsection 3.2, the validation and verification of the
model, Subsection 3.3, and the final generation of the HTLE,
Subsection 3.4. Then, the procedure to propagate an HTLE
by means of HSGP4 is discussed in Section 4, which includes
a brief description of the HSGP4 propagator, Subsection 4.1,
and the presentation of some results, Subsection 4.2. Finally,
the main concepts of the study are summarized in Section 5.

2. HYBRID METHODOLOGY

The hybrid methodology for orbit propagation is designed
to complement one of the classical methods, namely general
perturbation theories,1, 4–7 special perturbation theories,8, 9 or
semianalytical techniques,10–12 with time series forecasting
techniques based on either statistical models13, 14 or compu-
tational intelligence methods.15 As a result, the forecasting
phase can model the dynamics missing from the integrating
stage, based on accurate ephemeris available during an ini-
tial control interval, with the aim of reproducing it at future
epochs, when accurate ephemeris are no longer available.

Similarly to any other propagation theory, the hybrid
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methodology is designed to determine an estimation x̂f of
the position and velocity of an orbiter at a final instant tf ,
from its position and velocity x1 at an initial instant t1, where
x represents the complete set of six variables, which can be
referred to any canonical or non-canonical frame of reference.

In the first place, an initial approximation to x̂f has to be
calculated through the application of the integrating method
I, which represents any of the aforementioned classical theo-
ries, to the initial conditions x1:

xIf = I(tf ,x1). (1)

In general, the integrating method I includes some sim-
plifications so as to make the process viable and affordable,
and thus xIf is just an approximation of x̂f . A second step,
in which an estimation of the difference is predicted, is there-
fore necessary. In order to achieve it, a forecasting technique
has to model the dynamics missing from the approximation
generated by I. For that purpose, a set of either real obser-
vations or accurately generated ephemeris x, which represent
the real dynamics of the orbiter, must be available during an
initial control interval [t1, tT ]. By means of those values, the
error of the integrating technique, that is, its difference with
respect to the orbiter real behavior, can be determined for any
instant ti in the control interval as

εi = xi − xIi . (2)

The time series of εi values from t1 to tT , ε1, . . . , εT ,
which we call control data, contains the dynamics to be mod-
eled and reproduced by the forecasting technique. After the
adjustment process, an estimation of the error at the final in-
stant tf , ε̂f , can be determined, thereby allowing for the cal-
culation of the desired value of x̂f as

x̂f = xIf + ε̂f . (3)

3. GENERATION OF HYBRID TLES: HTLES

In this section, the algorithm to generate a hybrid TLE,
HTLE, from a standard TLE, will be described with the aid
of the flow chart shown in Figure 1.

3.1. SGP4 propagation error

The first step in generating an HTLE consists in discovering
the pattern of the error of the ephemeris obtained through the
SGP4 propagation of the standard TLE, with respect to either
precise ephemeris generated by means of an accurate numer-
ical propagator, or real observations.

In this case, the TLE reproduced in Figure 2, which corre-
sponds to the LEO satellite Deimos 1, will be processed dur-
ing a period of time in absence of maneuvers so as to obtain
the corresponding HTLE. The osculating orbital elements for
this TLE are:

• semimajor axis: a = 7047.253 km,
• eccentricity: e = 0.001229,
• inclination: i = 98.093◦,
• argument of perigee: ω = 67.201◦,
• right ascension of ascending node: Ω = 23.673◦,
• mean anomaly: M = 292.869◦.

In the first place, as shown in Figure 1, the TLE is propa-
gated with SGP4 during a control interval, from t = 1 to t =

T , in order to obtain the SGP4 set of ephemeris,
{
xSGP4
t

}T
t=1

,
where x represents the set of six variables.

In addition, the first obtained ephemeris, that is xSGP4
1 , is

also propagated by means of a highly accurate orbit propaga-
tor so as to generate a set of precise ephemeris

{
xOP
t

}T
t=1

,
which we will call pseudo-observations. It is worth noting
that a set of real observations could also be used instead of
pseudo-observations. For the present study, the numerical
propagation of a model which considers a 60×60 Earth grav-
itational potential, atmospheric drag, luni-solar effect, solar
radiation pressure including eclipses, Earth albedo, Earth IR,
Earth solid tides, and relativistic effect has been used in order
to generate pseudo-observations during the control interval.

Finally, a time series which represents the error of the
SGP4 propagation can be obtained for each of the variables
by subtracting the SGP4 set of ephemeris from the pseudo-
observations:

{εxt }
T
t=1 =

{
xOP
t

}T
t=1
−
{
xSGP4
t

}T
t=1

. (4)

Any frame of reference can be used for the variables x; in
this case we have transformed orbital elements (a, e, i, ω,Ω,M)
into Delaunay variables (l, g, h, L,G,H) through the appli-
cation of the following expressions: l = M , g = ω, h = Ω,
L =

√
µa, G =

√
µa(1− e2), H =

√
µa(1− e2) cos i.

For the present study, we have generated ephemeris with
a sampling period of ten minutes, and we have taken an inter-
val of ten satellite revolutions, which corresponds to approx-
imately 0.7 days, as the control interval in which the SGP4
propagation error will be modeled.

3.2. Modeling through the Holt-Winters method

Figure 1 shows that it is possible to develop a model to esti-
mate SGP4 errors for any future time, {ε̂xt }

∞
t=T+1, from the

time series of the error during the control interval, {εxt }
T
t=1,

for each of the six variables. Therefore, improved ephemeris
will be able to be generated for future instants by adding es-
timated corrections to the standard SGP4 propagation. The
modeling of the time series can be done with several tech-
niques; we have chosen the Holt-Winters method not only
because of its simplicity and good results, but also due to the
portability of the developed model, which constitutes a desir-
able quality in order to allow for the model to be integrated
into HTLEs.



SGP4  𝐱𝑡
SGP4  

𝑡=1

𝑇
 

HIGHLY ACCURATE

ORBIT PROPAGATOR

𝑡 = 1 +

–

 𝐱𝑡
OP  

𝑡=1

𝑇
 

 𝜺𝑡
𝐱 𝑡=1

𝑇
 

HOLT-WINTERS

METHOD

VALIDATION

&

VERIFICATION

TLE

TLE

+

H-W params. at t=1

HTLE:

 𝜺 𝑡
𝐱 𝑡=𝑇+1

∞   model 

Fig. 1. Flow chart showing the process to generate a hybrid TLE, HTLE, from a standard TLE.
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Fig. 2. Deimos 1 TLE.



Holt-Winters16 is one of the so-called exponential smooth-
ing methods. They consider that a time series εt is composed
of trend µt, or secular variation, periodic oscillation St, or
seasonal component, and unpredictable or random varia-
tion νt. In the case of an additive composition, those three
components add up. In particular, the Holt-Winters method
considers a linear trend µt = A + Bt with level A and slope
B. Therefore, the value of the time series at an instant t can
be estimated as

ε̂t = At−1 +Bt−1 + St−s, (5)

where s represents the period of the seasonal component.
Then, A, B, and S can be determined for the same instant

t as the weighted sum of two values, one based on the time
series real value, εt, which must be known during the control
interval, and the other dependent on the previous estimation
of the time series components,

At = α(εt − St−s) + (1− α)(At−1 +Bt−1),

Bt = β(At −At−1) + (1− β)Bt−1, (6)

St = γ(εt −At) + (1− γ)St−s.

The three weights, α, β, and γ, with values in the interval
[0, 1], are known as smoothing parameters.

Algorithm 1 Holt-Winters
Require: s, c, h, and {εt}Tt=1

Ensure: ε̂T+h|T
1: Estimate the values of A0, B0, S−s+1, . . . , S−1, S0

2: for t = 1; t ≤ T ; t = t+ 1 do
3: At = α(εt − St−s) + (1− α)(At−1 +Bt−1)
4: Bt = β(At −At−1) + (1− β)Bt−1
5: St = γ(εt −At) + (1− γ)St−s
6: ε̂t = At−1 +Bt−1 + St−s
7: end for
8: Select error measure ∈ {MSE, MAE, MAPE} and

express it as a function of the smoothing parameters
9: Obtain the smoothing parameters that minimize
error measure using the L-BFGS-B method

10: Calculate AT , BT , ST−s+1, . . . , ST−1, ST for the opti-
mum smoothing parameters

11: ε̂T+h|T = AT + hBT + ST−s+1+hmod s

12: return ε̂T+h|T

The algorithm 1, which we have implemented in the R2

statistical programming language,17 shows how to apply the
Holt-Winters method to the prediction of future time series
values. The inputs to the algorithm are the amount of data per
revolution, s, the number of revolutions in the control interval,
c, the number of time steps after the control interval for which

2https://www.R-project.org

the time series value has to be predicted, h, and the control
data, {εt}Tt=1, with T = s × c. The output is ε̂T+h|T , that is
the forecast of the time series at the final instant tf = tT+h,
based on the last control data, εT .

The algorithm starts by estimating the initial parameters
A0, B0, S−s+1, . . . , S−1, and S0, which is accomplished
through a classical additive decomposition into trend and sea-
sonal variation over the first orbiter revolutions. A linear
regression over the trend provides the initial level A0 and
slope B0, whereas the seasonal component yields the values
of S−s+1, . . . , S−1, and S0.

Then, an iterative process takes place by applying (5)
and (6) to the control interval, starting from t1 until tT (lines
2–7). As a result, a set of time series estimated values, ε̂t,
dependent on the smoothing parameters, are determined.
Minimization of the estimation error with respect to the time
series real values, εt, leads to the optimal values of α, β, and
γ. The optimization method chosen for this process, which
must allow for the imposition of constraints to the smooth-
ing parameters, due to the fact that they must belong to the
interval [0, 1], is the limited memory algorithm L-BFGS-B,18

which is a variation of the BFGS method.19 Three different
error functions can be used as an optimization criterion, mean
square error, MSE, mean absolute error, MAE, and mean
absolute percentage error, MAPE:

MSE =
1

T

T∑
t=1

(εt − ε̂t)2,

MAE =
1

T

T∑
t=1

|εt − ε̂t|, (7)

MAPE =
1

T

T∑
t=1

∣∣∣∣εt − ε̂tεt

∣∣∣∣100.

Once the optimal smoothing parameters α, β, and γ have
been found, the time series parametersAT ,BT , ST−s+1, . . . ,
ST−1, ST are determined for the last period of the control
data, from which the forecast time series value at the final
instant, that is h epochs ahead, ε̂f = ε̂T+h|T , can be calcu-
lated as the addition of the last control data level AT , slope
BT , and equivalent seasonal value in the previous revolution
ST−s+1+hmod s (line 11).

3.3. Validation and verification

As Figure 1 shows, after generating the model of SGP4 error
{ε̂xt }

∞
t=T+1 for each of the six variables, a process of val-

idation and verification takes place. Essentially, it consists
in checking that the obtained models produce good results.
Pseudo-observations generated after the control interval are
taken as the reference in order to evaluate the distance error
corresponding to the corrected ephemeris. Since not always
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is it necessary to consider all the six models to reach a good
degree of accuracy, different sets of variables are checked in
order to find an optimum combination both in terms of accu-
racy and simplicity.

In the case we are using to illustrate the process, the mod-
eling has been performed on Delaunay variables. After check-
ing different combinations, Table 1 compares the distance er-
rors of the three that lead to the best results, for several time
spans. It can be observed that the mean anomaly l and the
argument of the perigee g, that is the terms with the faster
dynamics, are the variables whose error modeling contributes
the most to the accuracy of the results. Modeling also their
conjugate momenta, L and G, does not have any appreciable
effect, therefore they can be ignored for the sake of a simpler
model. Similarly, the influence of the right ascension of the
ascending node, h, and its conjugate momentum, H , is rather
reduced; they can even worsen the distance error after a 30-
day propagation as a consequence of being long-period terms,
whose slow dynamics can scarcely be modeled in a reduced
control interval of only 0.7 days. Therefore, modeling only
the time series of l and g errors, εlt and εgt , can be considered
enough to constitute the general model to be integrated into
the HTLE.

3.4. Generation of the HTLE

The final step in the process is the generation of the HTLE,
which consists in encapsulating the parameters deduced dur-
ing the application of the Holt-Winters algorithm for each of
the selected variables together with the standard TLE. These
parameters can even be referred to the initial instant t1, in-
stead of being associated to the end of the control interval tT ,
for a greater simplicity of the process. In fact, the only pa-
rameter of the model that has to be modified when moving
the reference from tT to t1 is the level, because the slope and
the seasonal component remain unchanged.

The additional parameters that the HTLE has to include,
for each of the selected variables, are the level and slope of
the secular component of the correction, A1 and B1, and the
different points of the seasonal variation along one revolu-
tion, S−s+2, S−s+1, . . . , S0, S1. For example, if the seasonal
component is characterized with ten points, like in the case
presented in this study, the number of additional parameters
to be included in the corresponding HTLE is 12 per variable.
As we have discussed in the previous subsection, the estima-
tion of only two time series, ε̂lt and ε̂gt , is enough in this case;
therefore 24 additional parameters have to be integrated, to-
gether with the original TLE contents, into the HTLE.

4. PROPAGATION OF HTLES WITH THE HYBRID
SGP4 PROPAGATOR: HSGP4

In this section we describe the steps that the hybrid SGP4
propagator, HSGP4, has to follow in order to process an

HTLE, as well as the improved results that can achieve with
respect to the standard SGP4 propagator.

4.1. HSGP4 propagator

Figure 3 shows a flow chart of the propagation process. As
we have previously expounded, an HTLE consists of a stan-
dard TLE plus a set of Holt-Winters parameters which con-
stitute the model of the error that SGP4 commits when prop-
agating that TLE. Consequently, the propagation procedure
to be carried out by HSGP4 must comprise two processes: a
standard SGP4 propagation of the TLE, which generates the
SGP4 ephemeris at the final instant tf , xSGP4

f , and a forecast
of the SGP4 error at tf based on the Holt-Winters parameters,
ε̂xf , which constitutes the correction for xSGP4

f . This correc-
tion can be easily calculated by adding the secular compo-
nent at tf , determined by the straight line with level A1 at t1
and slope B1, and the seasonal variation, which can be ob-
tained through interpolation from the set of seasonal param-
eters S−s+2, S−s+1, . . . , S0, S1. The addition of the SGP4
ephemeris and the forecast of its error leads to the improved
ephemeris at tf , x̂f , as the output of the HSGP4 propagation
process.

Evidently, both xSGP4
f and ε̂xf have to be added in the

same frame of reference, hence some conversions may be
necessary depending on the type of variables used to model
SGP4 error. In our case, since we have chosen Delaunay
variables for that purpose, it is necessary to convert the SGP4
ephemeris from orbital elements into Delaunay variables.
Then, after adding the error forecasts ε̂lf and ε̂gf , the cor-
rected ephemeris can be transformed into any other frame of
reference.

4.2. Results

Table 1, which was previously analyzed in order to evaluate
the best combination of Delaunay variables to be modeled,
shows not only the distance error of HSGP4 for three combi-
nations of variables, but also the distance error of the standard
SGP4 propagation with respect to the pseudo-observations
generated by the numerical propagator.

The most remarkable conclusion that can be drawn from
Table 1 is that the hybrid methodology clearly contributes to
extend the validity of TLEs. In fact, HSGP4 distance error is
five times lower than SGP4 error after one week, and twelve
times lower after 30 days of propagation. The distance error
of HSGP4 after 30 days, 41.1 km, is equivalent to SGP4 error
after only 2.9 days.

Figure 4 depicts the distance error for both the standard
SGP4 propagator and HSGP4 with modeling of εlt and εgt .
Similarly to Table 1, Figure 4 also shows that the distance
error of HSGP4 remains one order of magnitude below the
distance error of the standard SGP4.



Table 1. Distance error (km) of SGP4 versus HSGP4 modeling different sets of Delaunay variables.

Propagation span SGP4 HSGP4(l,g) HSGP4(l,g,L,G) HSGP4(l,g,h,L,G,H)

0.7 days 10.551 1.088 0.994 1.019

1 day 14.235 3.206 3.195 3.198

2 days 28.650 5.883 5.893 5.708

7 days 101.164 20.477 20.500 19.483

30 days 486.738 41.100 41.099 42.969
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Fig. 3. Flow chart showing the procedure to process an HTLE with the hybrid SGP4 propagator, HSGP4.
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Fig. 4. Distance error corresponding to SGP4 (blue) and HSGP4 (red), modeling εlt and εgt , during a 30-day propagation.



5. CONCLUSION

An improvement to the well-known SGP4 propagation of
TLEs has been presented, with the main aim of extending
TLE validity. It is based on the application of the hybrid
methodology to SGP4, which implies determining the error
of the SGP4 propagation of the TLE to be processed during
an initial control interval, modeling that error dynamics, and
finally forecasting it for a future instant in order to correct
the ephemeris generated through SGP4. The modeling pro-
cess has been done according to the Holt-Winters algorithm,
which allows generating a portable model that is very easy to
encapsulate together with the TLE.

This approach requires the distribution of hybrid TLEs,
HTLEs, which integrate both the standard TLE and the er-
ror model. Accordingly, in order to take full advantage of
the HTLE extended validity, the propagation has to be done
through the hybrid SGP4 propagator, HSGP4, which com-
prises the standard SGP4 and an error corrector that is capa-
ble of estimating the SGP4 error, based on the model encap-
sulated in the HTLE.

The presented methodology constitutes a non-intrusive
approach, which requires minimal changes to the current
SGP4-TLE system, and hence can be very easy to implement
for the HTLE distributor, and to apply for the end user. In
addition, despite the clear extension of the HTLE validity, the
computational requirements are very low.
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