

Asteroid Rendezvous Uncertainty Propagation

Marco Balducci* Brandon Jones[†]

*University of Colorado Boulder †The University of Texas at Austin ICATT PRESENTATION MARCH, 2016 Background

Motivation

Rendezvous With Asteroid

Quantify the Uncertainty of a Rendezvous

- Determine Mission Success
- Seek to Quantify or Reduce Risks and Costs
- Uncertainty Quantification Can Lead to Robust Optimization
- Sensitivity of States With Respect to Inputs

State and Uncertainty Estimation

Non-linear Propagation

- Long propagation times
- Large initial uncertainty
- Tend to yield non-Gaussian posterior PDFs
- Reacquire an object
- Desire for non-intrusive approach
 - legacy software

Traditional Astrodynamic UQ

Established Techniques

- Monte Carlo
- Linearization and the state transition matrix (STM)
 - Astrodynamics Community
- Unscented Transform (UT)
 - Switching Over

These Methods Have Drawbacks

- Convergence rate of MC is slow
- STM, as well as UT, rely on Gaussian distribution assumption

Image credit: NRC - Continuing Kepler's Quest

Therefore, more robust methods must be considered

Proposed Astrodynamic UQ

Methods in Development

- Polynomial Chaos Expansions (PCE)
- Gaussian Mixtures
- State Transition Tensors (STT)
- Differential Algebra (DA)

Image credit: Fujimoto, et al. (2012)

Image credit: Jones, et al. (2013)

Image credit: Horwood, et al. (2011)

Proposed Astrodynamic UQ - Properties

- PCE benefit from surrogate properties and fast convergence rate
- GMM can leverage existing filters and Gaussian techniques
- STT and DA methods reduce the computation burden

Without mitigation techniques, PCE and Gaussian Mixtures suffer from the curse of dimensionality

- Computation time increases exponentially with respect to input dimensions d
- Resulting in increased computation time or dimension truncation

STT Must Solve for Multiple Differential Equations, While DA is an Intrusive Method

Separated Representation

Premise: Decompose a multi-variate function into a linear combination of the products of uni-variate functions

$$q\left(\xi_{1},\ldots,\xi_{d}\right)=\sum_{l=1}^{r}s^{l}u_{1}^{l}\left(\xi_{1}\right)u_{2}^{l}\left(\xi_{2}\right)\cdots u_{d}^{l}\left(\xi_{d}\right)+\mathcal{O}\left(\epsilon\right)$$

- r is the separation rank
- $u_i^l(\xi_i)$ are the unknown uni-variate functions/factors
- Computation cost dominated by relatively few MC propagations

Extensive Background

- Chemistry, data mining, imaging, etc
- Doostan & laccarino 07,09. Nouy 07,10,11,12,13.
 Koromskij & Schwab 10. Cances et al. 11. Kressner & Tobler 11.
 Doostan et al. 12,13,14. Beylkin et al. 09

Connections With SVD

Singular-value decomposition (SVD):

 $\mathbf{Q} = s^1 \mathbf{u}_2^{\mathbf{u}_1} + \dots + s^r \mathbf{u}_2^{\mathbf{u}_2} \quad \mathbf{Q} \approx \sum_{l=1}^r s^l u_1^{l^T} u_2^l$

Separated approx: generalization of matrix SVD to tensors:

Functions: $q(\xi_1, \xi_2, \xi_3) = s^1 \qquad u_3^{\frac{1}{3}} + \dots + s^r \qquad u_2^{r_3} = s^{\frac{1}{2}} s^l u_1^l(\xi_1) u_2^l(\xi_2) u_3^l(\xi_3)$

A Non-Intrusive Implementation

Problem Set Up: Given *n* random samples

reconstruct a low-rank separated representation:

$$\hat{q}\left(\boldsymbol{\xi}\right) = \sum_{l=1}^{r} s^{l} u_{1}^{l}\left(\xi_{1}\right) u_{2}^{l}\left(\xi_{2}\right) \cdots u_{d}^{l}\left(\xi_{d}\right) \, \text{s.t.} \, \|q - \hat{q}\|_{D} \leq \epsilon$$

where,

$$\|\hat{q}\|_D^2 := \frac{1}{N} \sum_{j=1}^N \hat{q} \, (\boldsymbol{\xi}_j)^2$$

Separated Representations

A Non-Intrusive Implementation

Spectral Decomposition of Factors

$$u_{i}^{l}\left(\xi_{i}\right) = \sum_{p=0}^{P} c_{i,p}^{l} \psi_{p}\left(\xi_{i}\right)$$

where,

$$\int_{\Gamma_{i}} \psi_{j}\left(\xi_{i}\right) \psi_{k}\left(\xi_{i}\right) \rho\left(\xi_{i}\right) d\xi_{i} = \delta_{jk}$$

Discrete Approximation

$$\left\{c_{i,p}^{l}\right\} = \arg_{\left\{\hat{c}_{i,p}^{l}\right\}} \min \left\|q\left(\cdot\right) - \sum_{l=1}^{r} s^{l} u_{1}^{l}\left(\cdot\right) u_{2}^{l}\left(\cdot\right) \cdots u_{d}^{l}\left(\cdot\right)\right\|_{D}$$

Computation Cost

Linear Scalability: Required Number of Solution Samples

$$\hat{q}(\boldsymbol{\xi}) = \sum_{l=1}^{r} s^{l} u_{1}^{l}(\xi_{1}) u_{2}^{l}(\xi_{2}) \cdots u_{d}^{l}(\xi_{d})$$

Number of unknowns $= r \cdot d \cdot P$

$$N \sim \mathcal{O}\left(r \cdot d \cdot P\right)$$

Total Computation Time is Quadratic With Respect to d When ALS is Applied

$$C_d \sim \mathcal{O}\left(K \cdot r^2 \cdot d \cdot P^2 \left(N + S\right)\right)$$

This cost should be small when compared to the number of required MC propagations

Analysis

Analysis

Distribution Characteristics

- Nominal Trajectory and Maneuver Found Using Lambert Solver
- Uncertainty in asteroid 2006 DN orbital elements and interceptor initial state
- Error in magnitude and direction of interceptor maneuver at epoch
- Propagated for 1088 days, Dormand-Prince (5)4 Integrator
- Estimate heliocentric Cartesian coordinates and velocity

Results compared to one million MC samples

Random Inputs

	Mean	STD		Mean	STD
$\begin{array}{c} a \ ({\rm AU}) \\ {\rm e} \\ {\rm inc} \ ({\rm deg}) \\ \omega \ ({\rm deg}) \\ \Omega \ ({\rm deg}) \\ M \ ({\rm deg}) \end{array}$	1.38013 0.27859 0.26764 101.24110 96.62356 8.69171	$\begin{array}{l} 3.0097e-04\\ 1.5878e-04\\ 1.3974e-04\\ 4.3343e-03\\ 6.6975e-03\\ 0.72173\end{array}$	$ \begin{array}{c} x (AU) \\ y (AU) \\ z (AU) \\ \dot{x} (km/s) \\ \dot{y} (km/s) \\ \dot{\Delta}V_x (km/s) \\ \overline{\Delta V}_x (km/s) \\ \overline{\Delta V}_z (km/s) \\ \theta (deg) \\ \phi (deg) \end{array} $	$\begin{array}{c} -0.93808\\ -0.35197\\ 1.9736e-05\\ 9.99105\\ -28.00263\\ 2.1797e-04\\ 1.51305\\ -3.48573\\ -0.05830\\ 0\\ 0\end{array}$	$\begin{array}{c} 1.33691e-09\\ 1.33691e-09\\ 1.33691e-09\\ 8e-03\\ 8e-03\\ 8e-03\\ 0.01513\\ 0.03485\\ 5.830e-04\\ 1\\ \pi\end{array}$
			φ (ucg)	0	7

15 random inputs required 1200 samples, r = 8, and P = 3

15 random inputs required 1200 samples, r = 8, and P = 3

15 random inputs required 1200 samples, r = 8, and P = 3

SR Results (d = 15)

_

	Rel. Mean	Rel. STD
x_{DN}	3.5e-05	7.9e-04
y_{DN}	1.6e-05	1.4e-03
z_{DN}	4.4e-05	9.4e-04
\dot{x}_{DN}	1.7e-06	2.6e-04
\dot{y}_{DN}	1.0e-05	9.1e-04
\dot{z}_{DN}	7.9e-06	4.2e-03
x_{int}	6.5e-05	5.7e-04
y_{int}	9.9e-06	2.2e-03
z_{int}	1.0e-04	4.3e-04
\dot{x}_{int}	3.6e-05	4.7e-04
\dot{y}_{int}	3.2e-05	2.2e-04
\dot{z}_{int}	5.9e-04	2.0e-03

Sensitivity Analysis

	Quantities of Interest						
Inputs	x_{DN}	y_{DN}	z_{DN}	\dot{x}_{DN}	\dot{y}_{DN}	\dot{z}_{DN}	
a	$ \sim 0$	~ 0	~ 0	~ 0	~ 0	~ 0	
e	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
inc	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
ω	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
Ω	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
M	0.9	0.9	0.9	0.9	0.9	0.9	

Sensitivity Analysis

	Quantities of Interest						
Inputs	x_{DN}	y_{DN}	z_{DN}	\dot{x}_{DN}	\dot{y}_{DN}	\dot{z}_{DN}	
a	$ \sim 0$	~ 0	~ 0	~ 0	~ 0	~ 0	
e	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
inc	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
ω	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
Ω	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
M	0.9	0.9	0.9	0.9	0.9	0.9	

	Quantities of Interest						
Inputs	x_{int}	y_{int}	z_{int}	\dot{x}_{int}	\dot{y}_{int}	\dot{z}_{int}	
x_{int}	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
y_{int}	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
z_{int}	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
\dot{x}_{int}	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
\dot{y}_{int}	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
\dot{z}_{int}	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
$ \Delta V $	0.8	0.9	0.9	0.9	0.8	0.8	
θ	~ 0	~ 0	~ 0	~ 0	~ 0	~ 0	
ϕ	0.8	0.8	0.9	0.8	0.8	0.9	

Rendezvous Distance

One-to-One Comparison of One Million Samples

Rendezvous Distance

One-to-One Comparison of One Million Samples

Rendezvous Distance

One-to-One Comparison of One Million Samples

Minimum Distance Was Approximately 4400 km

The End

Summary

Separated Representations

• Non-linear propagation of uncertainty can be expensive or complex

- Non-linear propagation of uncertainty can be expensive or complex
- SR estimates a posterior distribution with a surrogate method

- Non-linear propagation of uncertainty can be expensive or complex
- SR estimates a posterior distribution with a surrogate method
 - $\circ~$ With a largely linear cost in d~

- Non-linear propagation of uncertainty can be expensive or complex
- SR estimates a posterior distribution with a surrogate method
 With a largely linear cost in d
- Rendezvous PDF too sparse for target distance

- Non-linear propagation of uncertainty can be expensive or complex
- SR estimates a posterior distribution with a surrogate method
 - $\circ~$ With a largely linear cost in d
- Rendezvous PDF too sparse for target distance
 - Different approach such as all-to-all

- Non-linear propagation of uncertainty can be expensive or complex
- SR estimates a posterior distribution with a surrogate method
 - $\circ~$ With a largely linear cost in d
- Rendezvous PDF too sparse for target distance
 - Different approach such as all-to-all
 - Addition of TCM and optimization

The End

Questions and Comments

Additional Material

Additional Material

