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ABSTRACT
Most methods of propagating orbit uncertainty assume pos-
teriori Gaussian distributions, require an intrusive implemen-
tation or suffer from the curse of dimensionality associated
with high-dimensonal random inputs. Although Monte Carlo
techniques avoid these drawbacks, the approach has a slow
convergence rate. This paper considers the application of sep-
arated representations for orbit uncertainty propagation and
discusses the theory behind their generation. The computa-
tion cost of a separated representation is largely linear with re-
spect to dimension, thereby improving tractability when com-
pared to methods that suffer from the curse of dimensionality.
Generation of a separated representation requires the propa-
gation of a small number of samples and yields an approxi-
mate solution, or surrogate, to a given stochastic differential
equation describing the propagated orbit. This surrogate pro-
vides information on the moments and spatial density of pos-
sible solutions, as well as the sensitivity of the quantities of
interest with respect to random inputs. This paper presents
the case of spacecraft targeting an asteroid for a rendezvous,
for which the initial conditions of each and the components
of the interceptor maneuver are uncertain. Separated repre-
sentations is used to estimate the probability of a successful
rendezvous and analyze the resulting probability distribution
functions.

Index Terms— non-Gaussian, curse of dimensionality,
sensitivity analysis, separated representations

1. INTRODUCTION

Characterizing the variability of a system due to input and
modeling errors is known as uncertainty quantification (UQ).
Methods of UQ seek to estimate this variability in order to ob-
tain a more complete understanding of an uncertain system.
Typically, there is a trade-off between accuracy and computa-
tion time. One established, high accuracy approach is that of
Monte Carlo (MC). Using this method, a large number of ran-
dom variable realizations are propagated to a final state. From
this state, statistical characteristics of the probability distribu-
tion function (PDF) can be calculated. MC has been proven
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effective when applied to the field of astrodynamics [1], but
its performance comes at a high cost. The connergence rate
of Monte Carlo is known to be inversely proportional to the
square root of the number of realizations. This results in sig-
nificant increases in sample size and computation costs in or-
der to achieve incremental improvements in accuracy.

As an alternative, uncertainty mapping using the state
transition matrix (STM) can be used to estimate a poste-
rior PDF [2]. This method has extensive history within the
astrodynamics community. Its relative requirement for com-
putation time is low, but, due to its reliance on a linearization
scheme, the approach is undesirable in the nonlinear regime
of orbit propagation [3]. The unscented transform (UT) is an
efficient approach that propagates uncertainty in a nonlinear
fashion. However like the STM, the UT relies on Gaussian
assumptions, which have been proven to be innacurate under
cases of high variance, significant time between observations
or both [3]. This paper considers the approach of surro-
gate methods in order to keep computation times low while
maintaining high accuracy over long propogation times.

Methods such as Polynomial Chaos (PC) [4, 5, 6, 7, 8]
and Gaussian Mixture Methods (GMM) [9, 10, 11] have been
explored as alternatives to current approaches [6]. These UQ
methodologies do not make Gaussian assumptions, but com-
putation time remains a concern, as it increases quickly (up
to exponential) with respect to the number of uncertain in-
puts or stochastic dimensions [12, 9]. In addition to these,
state transition tensors (STT) are also being researched for
the purposes of UQ [13, 14, 15]. Although STT are efficient
and accurate for nonlinear propagation, derivation of complex
partial derivatives or numerical methods are required for their
approximation. Another technique currently undergoing re-
search in the field of astrodynamics is that of differential alge-
bra (DA). By replacing a typical implementation of computa-
tional algebra with an approximation based on Taylor polyno-
mials, computation costs may be greatly reduced [16]. As ap-
plied to astrodynamics in [17, 18, 19] among others, DA pro-
vides an accurate and cost effective method to estimate PDFs
in orbital environments. DA, however, is an intrusive method
of uncertainty propagation, and therefore, existing and proven
propagation techniques cannot be leveraged.



In addition to quanitifying the uncertainty of a system and
the related statistics, it is often desirable to determine the rel-
ative effects that the random inputs have on the uncertainty of
the system. This relationship, between the variability of the
quantities of interest (QOIs) and the uncertain inputs, can be
quantified with a sensitivity analysis [20]. Using an analysis
of variance (ANOVA), sensitivity indices are produced. With
these indices, random inputs with significant impact of QOIs
can be identified, which could allow for justified dimension
truncation. By identifying the inputs with larger effects on
the solution uncertainty, it then becomes possible to prioritize
dimension determination. With this priority in mind, the de-
termination of these dimensions makes it possible to reduce
output uncertainty by the largest possible ammount [20]. PC
is able to generate such ANOVA based sensitivity indices an-
alytically and has been shown to be efficient [21], however,
this low computation cost lies in the assumption of a low di-
mension problem or low polynomial degree. By assuming
low stochastic dimension, the scope of a sensitivity analysis
may become limited.

As a potential solution to the trade-off between accuracy
and computation, we propose the approach of separated rep-
resentations (SR) for propagating uncertainties associated
with the initial state of objects in space and other param-
eters to a future time. SR provides a surrogate model by
decomposing a multivariate function of inputs into a sum of
products of univariate functions of those inputs. This low
rank decomposition can efficiently quantify the response of a
system to a set of inputs. SR has been shown to significantly
reduce computation times for high-dimension stochastic sys-
tems [22, 23, 24, 25, 12, 26, 27, 28, 29], while making no
assumptions of a Gaussian a posteriori distribution. Since
it was first applied to astrodynamics by [30], SR has also
been used to produce a direct solution of the Fokker-Planck
equation for perturbed Keplerian mechanics [31]. Crucially,
the theory of SR predicts that the computational complexity
remains linear with respect to the number of random inputs.
This has been demonstrated by Beylkin, et al [32]. By main-
taining a low cost with respect to stochastic dimension, the
available suite of random inputs can be utlized without signif-
icantly increasing computation time. In addition to this, SR
is capable of producing moments analytically via an analysis
of available coefficients [12].

This paper presents tests and numeric examples which
consider the use of SR methods for the propagation of the
multivariate state PDF of an asteroid and an intercepting
spacecraft without a posterior Gaussian assumption. The re-
sults of numeric tests are used to quantify the probability of
a sucessful rendezvous. Section 2 introduces the setup for
rendezvous problem. Section 3 then presents the method of
SR and an overview of implementation. Following these sec-
tions, Section 4 examines experimental tests and associated
results for the presented rendezvous problem, while Section
5 concludes the paper with a summary for future work.

2. PROBLEM SETUP

To describe the rendezvous scenario, this work examines the
state of the target asteroid 2006 DN qDN and an interceptor
qint. Both of these states consist of the object’s heliocentric
Cartesian position and velocity components. These values are
considered the QOIs. By propagating an initial collection of
QOIs q0 ∈ RM , the state of the heliocentric system can be
found at a later time, q ∈ RM , where M denotes the dimen-
sion of the QOI. It should be noted that the particular elements
of q0 and q are not required to be related on a one-to-one ba-
sis. For instance, the initial QOIs could be the orbital states
of our objects, while the final QOI could be time of flight. In
this case, q = [qDN , qint]

T and M = 12.
In order for the interceptor to rendezvous with the aster-

oid, a maneuver is required. This burn is computed using
the initial conditions of both objects as inputs into a Lam-
bert solver and occurs at the initial time t0. The uncertainties
in the probelm results from inaccuracies in the initial states of
both the asteroid and interceptor, as well as errors in the afore-
mentioned maneuver. By assuming the state q depends on d
random variables ξ ∈ Rd, we characterize the uncertainty in
the initial state and the burn direction and magnitude. In this
paper, d is the stochastic dimension referred to in Section 1
and the following sections.

The state of both objects at the propagated time t is de-
noted as q(t, ξ) and satisfies a set of ODEs

F (t, ξ; q) = 0 (1)

describing the temporal evolution of the each state. In this
scenario, t ∈ [t0, tf ] is the temporal variable and the initial
condition

q(t0, ξ) = q0(ξ) (2)

is considered. For the interest of a cleaner presentation, the
temporal dependence of q is restricted to a fixed instance of t
and the short notation of q(ξ) is adopted.

The components of ξ, denoted by ξi, are defined as inde-
pendent, standard Gaussian random variables when applied
to the initial states of both the asteroid and the interceptor,
i.e., ξ ∼ N (0, I12×12), where I12×12 is the 12 × 12 iden-
tity matrix. In order to model the maneuver, a combination
of Gaussian and uniform random inputs is employed. Since
twelve other random inputs have been defined, the following
maneuver random inputs begin with a subscript of thirteen.
Given the nominal maneuver ∆V described in Cartesian co-
ordinates, the sampled maneuver vector is calculated as

∆V (ξ13, ξ14, ξ15) = ∆V + δ∆V (ξ13, ξ14, ξ15) (3)
δ∆V (ξ13, ξ14, ξ15) = . . .

Q(ξ14, ξ15)⊗ (ξ13σmag∆V )⊗Q∗(ξ14, ξ15), (4)

where Q is the quaternion defining the transformation from
the maneuver error frame to the inertial frame,Q∗ is the con-
jugate of this quaternion, σmag is the error of the maneu-
ver burn magnitude as a percent from the nominal, and ⊗ is



the quaternion multiplication operator. As previously stated,
a hybrid strategy of Gaussian and uniform variables is em-
ployed, i.e., ξ13, ξ14 ∼ N (0, 1) and ξ15 ∼ U(−1, 1). In this
application, δ∆V is the error of the maneuver burn. In or-
der to calculate the direction of this error, the angles θ(ξ14)
and φ(ξ15) are embedded within the quaternion Q. As seen
in Figure 1, the angle θ(ξ14) defines the deviation of the ma-
neuver relative to the nominal maneuver, while φ(ξ15) is a
rotational error about this nominal direction. In this applica-
tion, the rotational angle is distributed as φ(ξ15) ∼ U(−π, π).
For an application with additional details, the reader is recom-
mended the paper by Jones, et al. [6].

Fig. 1. Maneuver execution error including angle errors.
Adapted from an image found in [33]

In a typical application of MC, the statistics of q(ξ), such
as the mean and standard deviation (STD), are estimated
by evalulating a large number N of realizations of q(ξ),
{q (ξj)}Nj=1. These values are propagated from the initial

state condition {(ξj , q0 (ξj))}Nj=1, where ξj is an arbitrary
sample of ξ. For notation purposes, the jth sample of ξi is
given as ξi,j . The joint PDF of q may also be approximated
using a sufficiently large number of realizations of q.

The construction of SR relies on using random samples
of ξ, {ξj} and the corresponding realizations {q (ξj)} from
black box propagations, where the distance between q(ξ) and
the SR approximation q̂(ξ) is minimized at the samples {ξj}
using a regression approach. As leveraged throughout this pa-
per, we define the data-dependent inner product of two vectors
q(ξ), r(ξ) ∈ RM as

〈q, r〉D =
1

N

N∑
j=1

〈q(ξj), r(ξj)〉2 , (5)

where 〈·, ·〉2 denotes the standard Euclidean inner product.
The inner product in (5) induces the norm

‖q‖D = 〈q, q〉1/2D , (6)

which is used within this presentation.

3. SEPARATED REPRESENTATIONS

This presentation of SR is a modification of that which is
shown in the papers [34, 30, 12, 32]. For the sake of brevity,
the reader is referred to these references for more details. As
a surrogate method, the separable approach is that of approxi-
mating a multivariate scalar function q(ξ) with a sum of prod-
ucts of univariate functions. With the simplest form of SR,
the estimation of the scalar function may be formulated as a
product of separate, univariate functions

q (ξ) ≈ q̂(ξ) =

d∏
i=1

ui(ξi), (7)

with q̂(ξ) being the separated approximation of q(ξ). The
univariate functions of Eq. 7 are calculated so that the dif-
ference between q̂(ξ) and q(ξ) is as small as possible. As
a relatively simple approximation, this method is inflexible
and may not achieve a desired accuracy. Therefore, a sum of
seperable functions is often considered, taking the form of

q(ξ) ≈ q̂(ξ) =

r∑
l=1

sl
d∏

i=1

uli (ξi) . (8)

By expanding the approximation into a sum with separation
rank r, the unknown univariate functions, or factors are now
indexed from 1, . . . , r, i.e., {uli(ξi)}rl=1, i = 1, . . . , d, and are
normalized by the constants {sl}rl=1 such that each factor has
unit norm.

These factors are approximated by unknown constants
and a known polynomial basis in ξi,

uli (ξi) ≈
P∑

p=0

cli,pψp(ξi), (9)

where ψp(ξi) is a polynomial of degree p. This approach dis-
cretizes the univariate functions and allows for an optimiza-
tion problem which is focused on finding the unknown coeffi-
cients cli = [cli,1, . . . , c

l
i,P ] along an individual direction i and

rank l via
min
{cl

i}
‖q − q̂‖2D . (10)

3.1. Polynomial Basis

As explained in [35], the choice of the polynomial basis is
based on establishing orthonormality between the basis of
each random input direction i and the corresponding proba-
bility density function of ξi. Applied with respect to PC, this
same approach is used when choosing the polynomial basis
for SR. In the case of a normal Gaussian distribution, Her-
mite polynomials are chosen. However, due to the anglular
property of the rotaion φ(ξ15), the corresponding polynomial
is that of the Fourier basis

ψp(ξi) ∈ {cos(pπξi), sin(pπξi)}, (11)



and thus require two separate unknown coefficients. Applied
to astrodynamic estimation using PC in [36], the Fourier ba-
sis is the appropriate choice for the case of φ(ξ15) as it is
orthogongal with respect to the circular uniform distribution
in question [36].

3.2. Vector-Valued Function Estimation

In the case of the rendezvous application, it is desirable to
esimate the vector-valued QOI via SR simultaneously. For
this case, the SR approximation of q(ξ) ∈ RM is determined
by

q(ξ) ≈ q̂(ξ) =

r∑
l=1

sl ul
0

d∏
i=1

uli (ξi) . (12)

In this formulation, the definitions and process of approximat-
ing uli(ξi) remain the same as previously determined in Eq. 8.
The vector-valued definition of SR differs most significantly
from Eq. 8 due to the vector of deterministic factors ul

0 =
[ul0,1, . . . , u

l
0,M ]T ∈ RM . These deterministic factors are

used to to enable vector-valued approximations for q(ξ) by
solving the optimization problem

min
{cl

i},{ul
0}
‖q − q̂‖2D . (13)

Due to the addition of the deterministic factor vector, the set
of scalars sl are now normalization constants such that both
uli(ξi) and ul

0 have unit norm.

3.3. SR Construction Overview

The work in this paper utilized a process of constructing an
SR solution which in non-intrusive. Therefore, this method
considers an existing ODE solver as a black box, propagating
samples which are used to generate an SR solution. These
samples are organized as a set {(ξj , q(ξj))} of N random
samples, and their generation does not require any alterations
of the solvers for (1). With this in mind, the non-intrusive SR
process may be broken down into the following steps:

1. Generate a set of independent, random realizations
{ξj}Nj=1 based on appropriate probability density func-
tions

2. Using the a priori state distribution, generate the set of
samples {q0(ξj)}Nj=1 at the epoch time.

3. Using a black box ODE solver, propagate N samples
to the time of interest in order to get {q(ξj)}Nj=1.

4. Use the training data {(ξj , q(ξj))}Nj=1 to generate the
SR approximation.

3.4. Generating the SR Approximation

The process of step 4 in the previous section produces an SR
solution, which is done with a method known as alternating
least squares (ALS). This approach keeps the computation
cost of SR low when compared to methods such as PC, due to
the nonlinear optimization problem being reduced down into
a series of linear least squres regression problems [32].

The overall approach of ALS involves estimating the co-
efficients

{
cli
}

for one direction of interest k = 1, . . . , d at
a time, given a pre-selected basis {ψp(ξi)}. To update these
values, the unknown coefficients can be organized as

z =
[(
c1k
)T · · · (crk)

T
]T
, (14)

while the training samples q(ξ) are held in the data matrix

h =
[
q(ξ1)T · · · q(ξN )T

]T ∈ RMN . (15)

An estimate of these values can be found as a solution to the
problem

{clk}rl=1 = arg min
{cl

k}
r
l=1

‖q − q̂‖2D . (16)

To do this, we solve via the the normal equation(
ATA

)
z = ATh, (17)

whileA has the block matrix format

A =

A11 · · · A1r

...
. . .

...
AN1 · · · ANr

 , (18)

where the (j, l) block ofA,Ajl ∈ RM×P , is given by

Ajl = sl
[
ul
0 ψ1(ξk,j) · · ·ul

0 ψP (ξk,j)
]∏
i 6=k

uli (ξi,j) . (19)

The vector z is solved for each direction in alternation un-
til all directions k = 1, . . . , d have gone through the least
squares process. After this has been completed, the best es-
timate of the deterministic factors {ul

0} is found. Estimating
these values is similar to the process outlined in Eqs. 14 - 19,
with appropriate modifications. For more detail, readers are
encouraged to examine the references [30, 34].

4. NUMERIC RESULTS

For this paper, the problem setup of Section 2 is examined
in order to determine the chance of success for a rendezvous
between an asteroid and an interceptor with uncertain initial
conditions. In addition to this, the spacecraft undergoes an
initial maneuver with errors in the magnitude and direction of
the burn. The maneuver is implemented as occuring instan-
taneously at the beginning of the scenario, April 11, 2019 at



00:00:00 UTC. This scenario considers only a single burn at
the epoch time. To determine this chance of close contact,
this paper considers the distance between realizations of the
asteroid and interceptor at the final time of flight by using a
sampling based method, i.e.,

δq(ξ) = ‖qDN − qint‖, (20)

where δq(ξ) is the distance between the two objects. Each
sample is propagated for 1088 days using a Dormand-Prince
5(4) ODE integrator, with a nominal arrival time of April
3, 2022. This integrator uses a tolerance of 10−13 and two
body point mass dynamics of the sun. By defining a success-
ful rendezvous of a propagation as resulting in an asteroid-
interceptor distance of δq(ξ) < 400 km, the ratio of suc-
cessful to unsuccesful propagations can be calculated when
analyzing a large number of samples [37].

4.1. Initial Conditions

Initial state uncertainty STDs for 2006 DN were found using
the JPL Small-Body Database Browser1. These values can be
found in Table 1 along with initial conditions of the state and
consist of values for classic Keplerian elements such as semi-
major axis, inclination and mean anomaly. By using patched

Table 1. Parameters for Initial State Gaussian Distribution for
2006 DN

Mean STD

a (AU) 1.38013 3.0097e− 04
e 0.27859 1.5878e− 04
inc (deg) 0.26764 1.3974e− 04
ω (deg) 101.24110 4.3343e− 03
Ω (deg) 96.62356 6.6975e− 03
M (deg) 8.69171 0.72173

conics and a Lambert solver, the nominal components for the
interceptor maneuver were found. Table 2 includes the ran-
dom inputs and their associated STDs. Position and velocity
components are given in heliocentric Cartesian coordinates.

4.2. Analysis

Using r = 8, P = 3 and 1200 training samples, an SR solu-
tion for the heliocentric states of both objects was found. As
a vizualization aid, the distributions of the SR-based PDFs
and MC runs of 1,000,000 samples are created and plotted in
Figures 2 and 3. The multivariate PDF is evaluated by us-
ing independent sets of random variables and the appropriate
uncertainties.

In these figures, the red line is a fit for the center of the
MC bins, while the black bins represent the results evaluated

1http://ssd.jpl.nasa.gov/sbdb.cgi

Table 2. Random inputs and associated STDs for the inter-
ceptor

Mean STD

x (AU) −0.93808 1.33691e− 09
y (AU) −0.35197 1.33691e− 09
z (AU) 1.9736e− 05 1.33691e− 09
ẋ (km/s) 9.99105 8e− 03
ẏ (km/s) -28.00263 8e− 03
ż (km/s) 2.1797e− 04 8e− 03
∆V x (km/s) 1.51305 0.01513
∆V y (km/s) −3.48573 0.03485
∆V z (km/s) −0.05830 5.830e− 04
θ (deg) 0 1
φ (deg) 0 π

Fig. 2. Histograms of the final state PDF for asteroid DN

with the SR solution. Qualitatively, the fit is good, even con-
sidering the extended tails or sharp peaks of a non-Gaussian
distribution. Although some of the MC data may appear to be
Gaussian, applying the Jarque-Barre test to each QOI yields
the detection of a non-Gaussian distribution in all but the y-
component of 2006 DN’s velocity. By taking advantage of the
properties of SR, analytic results for the first and second mo-
ment are calculated. These numeric results and a comparison
of the MC and SR approach are included in Table 3. In this
table, the accuracy of the estimation is determined by a rela-
tive residual. Considering some value λ, the relative residual
may be defined as

εrel =

∣∣∣∣∣λ− λ̂λ
∣∣∣∣∣ . (21)

The results of Table 3 indicate at least three or more dig-
its of precision in the first and second moments of the state
PDFs. For this test case, a sensitivity analysis is also consid-
ered. Discussed in Section 1 and elaborated upon in [36], the
sensitivity of each QOI with respect to all random inputs is
calculated. Table 4 includes the results of a total sensitivity



Fig. 3. Histograms of the final state PDF for the interceptor

Table 3. Agreement between SR- and PC-based mean and
STD

Rel. Mean Rel. STD

xDN 3.5e-05 7.9e-04
yDN 1.6e-05 1.4e-03
zDN 4.4e-05 9.4e-04
ẋDN 1.7e-06 2.6e-04
ẏDN 1.0e-05 9.1e-04
żDN 7.9e-06 4.2e-03
xint 6.5e-05 5.7e-04
yint 9.9e-06 2.2e-03
zint 1.0e-04 4.3e-04
ẋint 3.6e-05 4.7e-04
ẏint 3.2e-05 2.2e-04
żint 5.9e-04 2.0e-03

analysis for the asteroid 2006 DN. The random inputs asso-
ciated with the interceptor’s state are not included, as they
are calculated to be zero. The current approach, by determin-
ing these indices with 1,000,000 samples, produces one digit
of precision. Therefore, many values are approximately zero.
As seen in Table 4, the mean anomaly has the most significant
contribution of uncertainty to the QOIs when considering the
PDF of asteroid 2006 DN. In addition to the asteroid, sensitiv-
ities for the intercepting spacecraft are also provided. Table 5
includes the indices, which, in turn, leaves out the contribu-
tions of the random inputs associated with 2006 DN. It should
be noted that other than impacting the QOIs the most, the ran-
dom inputs of |∆V | and φ are also highly correlated. This is
determined by the sum of the indices being larger than one.
Inutitively, this makes sense, as the total impact of the ma-
neuver is determined by the magnitude and direction of the
burn.

Using these PDFs and Eq. 20, the probability of ren-
dezvous success between the asteroid and the interceptor
is calculated. Comparing the distance between each of the
1,000,000 samples, the histogram in Figure 4 is produced,

Table 4. Sensitivity indices for 2006 DN
Quantities of Interest

Inputs xDN yDN zDN ẋDN ẏDN żDN

a ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
e ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
inc ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
ω ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
Ω ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
M 0.9 0.9 0.9 0.9 0.9 0.9

Table 5. Sensitivity indices for the interceptor
Quantities of Interest

Inputs xint yint zint ẋint ẏint żint

xint ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
yint ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
zint ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
ẋint ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
ẏint ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
żint ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
|∆V | 0.8 0.9 0.9 0.9 0.8 0.8
θ ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0
φ 0.8 0.8 0.9 0.8 0.8 0.9

as well as and empirical approximation of the cumulative
distribution function (CDF), F (ξ), in Figure 4. The scale

Fig. 4. Histogram of the distance between 2006 DN and an
interceptor

of the separation of the two objects should be noted. With
the current approach, the minimum distance found is approx-
imately 4.4e03 km. This places any potential approach of
2006 DN well outside the considered sphere of a successful
rendezvous. In this case, it is assumed that the volumes of
the PDFs are large in comparison to the desired distance.
Therefore, without a TCM or alternate means of probability
calculation, the probability of a mission success is approxi-
mately zero.



Fig. 5. CDF of the distance between 2006 DN and an inter-
ceptor

5. CONCLUSIONS AND FUTURE WORK

While the probability of a rendezvous in this scenario is calcu-
lated to be zero, the PDFs of both 2006 DN and an intercept-
ing spacecraft are accurately estimated using the approach of
separated representations. In this case, the methodology of
SR requires significantly less propagated samples than a com-
parable MC run. With this data now availale, more work may
be done to detect or increase the chances of a mission suc-
cess. This includes adding a TCM to the mission design or
implementing an all-to-all methodology for computing statis-
tics from a large sample set. By adding a TCM, the analysis of
this scenario can include the quantification of the uncertainty
in the QOIs as a function of the TCM errors. This approach
also allows for optimization under uncertainty with respect
to TCM design, thus reducing the a posteriori spread of the
PDFs.
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