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ABSTRACT 

 

In interplanetary orbiter missions, a specified arrival parking 

orbit in terms of closest approach altitude and inclination 

must be achieved. For a fixed departure date and a flight 

duration, there are four distinct transfer trajectory options for 

an interplanetary orbiter missions. The conventional patched 

conic method does not identify multiple distinct design 

options.  In this paper, an iterative patched conic method is 

introduced. An iteration on the patch points at the mean 

sphere of influences along with an analytical tuning strategy 

helps to obtain the distinct design options. A design analysis 

tool is developed using the proposed method. The 

performance of the proposed iterative patched conic method 

is compared with the iterative pseudostate method. The 

deviations in the target parameters such as closest approach 

altitude and the related time, obtained upon numerical 

propagation of the designs under similar force model, are 

compared. The benefits derived while attempting numerical 

refinement of these analytical designs are quantified. 

 

Index Terms— patched conic, pseudostate, trans 

correction maneuver, orbiter mission 

 

1. INTRODUCTION 

 

In 1925, Hohmann published a book which laid the 

foundation for the interplanetary mission design. The 

Hohmann transfer is essentially a heliocentric transfer from a 

departure planet to an arrival planet considering the planets 

as point masses. The planetary orbits are assumed as circular 

and coplanar. He concluded that the minimum delta-V 

transfer occurs at 180 degree transfer angle and with two 

impulses, one at the departure for transplanetary injection 

(TPI) and the other one for arrival parking orbit insertion 

(POI) [1]. Analytical solutions were derived through the 

application of conservation laws of angular momentum and 

energy [2]. But these solutions provide only a rough estimate 

of how to reach the arrival planet. Also, the Hohmann transfer 

design does not provide the direction of the departure 

velocity. The patched-conic approximation has thus been 

developed as a more accurate solution for the mission design. 

This method takes into account the gravitational forces due to 

the target planets also but one at a time basis. The spacecraft 

experiences the gravitational pull of the planets within the 

respective mean sphere of influence (MSI). Outside the MSI, 

only Sun acts on the spacecraft. Thus, the patched conic 

approximation subdivides the transfer trajectory into three 

distinct trajectories and patches them together at the MSI to 

create a single transfer trajectory. Different strategies are 

employed for patching the velocity discontinuities at the MSI 

such that the velocity at the exit of one phase is the same as 

the velocity at the entry of the next phase. However, the 

patched-conic approximation is still limited in that it only 

considers the gravity of one celestial body at a time. To 

overcome this limitation, the overlapped conic method has 

been introduced by Wilson Jr. in 1970 [3].  In this method, a 

larger MSI is considered for each planet, called the 

pseudosphere. Within the pseudosphere, both the Sun and the 

planet acts on the spacecraft and outside the pseudosphere, 

only Sun acts on the spacecraft.  

Further, for a fixed departure date and flight 

duration, there are two hyperbolic trajectory options 

corresponding to the ascending or descending geometry that 

contains the excess velocity vector of the departure phase. 

Similarly, there are two options for arrival phase also. Each 

of the departure hyperbolic trajectory option can be mapped 

to each of the arrival hyperbolic trajectory option. This 

process of mapping results in four distinct departure excess 

velocity vectors that correspond to four distinct transfer 

trajectory design options. The conventional patched conic 

method does not distinguish these excess velocity vectors. In 

this paper, an iterative patched conic technique is introduced 

which can clearly distinguish the four excess velocity vectors 

at departure. The high sensitivity of the departure conditions 

or the initial guess is discussed in detail. Due to patched conic 

assumptions, the design obtained results in large deviations 

in the target parameters such as closest approach altitude and 

the related time. To overcome the deviations in the target 

conditions, an analytical iterative pseudostate technique is 

discussed [4]. This method reduces the deviation in target 

conditions to a great extent when compared with the 

conventional designs and is demonstrated in this paper.  

 



 

2. METHODS OF TRAJECTORY DESIGN 

 

The interplanetary trajectory design aims at finding the initial 

guess or the departure parking orbit characteristics for the 

given departure date and flight duration, which will transfer 

the spacecraft to the arrival parking orbit with the specified 

periapsis altitude and inclination. The patched conic method 

splits the interplanetary transfer trajectory into three two-

body trajectories. This includes (i) a planetocentric departure 

hyperbolic orbit, (ii) an elliptic orbit about the Sun after 

escaping the departure planet’s MSI, and (iii) a planetocentric 

arrival hyperbolic orbit. The velocity discontinuities are 

patched at the MSI using some strategy. Bell and Clarke [5] 

used the differential correction method to modify the excess 

velocity vectors such that target conditions are met at the 

arrival phase. In Reference [6], the velocity at the end of 

geocentric phase and the velocity at the beginning of the 

heliocentric phase are synchronized using Newton-Raphson 

method. Ramanan and Adimurthy [7] used an analytical 

tuning strategy to modify the hyperbolic orbit characteristics 

such that excess velocity vectors are obtained at the MSI and 

subsequently, using the one-step pseudostate technique, 

target conditions are achieved.  

The departure and arrival hyperbolic orbit 

characteristics are derived from the excess velocity vectors. 

Using the conventional patched conic technique, only one 

excess velocity vector can be obtained at the MSI of planet. 

However, there exists four excess velocity vectors at 

departure that differ from each other marginally and the 

conventional patched conic method cannot generate them 

distinctly. The proposed iterative patched conic method 

generates the four distinct design options that are obtained by 

mapping each of the two hyperbolic orbit characteristics at 

departure with each of the arrival hyperbolic orbit 

characteristics. However, upon numerical propagation under 

a force model, these designs deviate from the specified target 

conditions due to patched conic assumptions. To improve the 

design, an iterative pseudostate technique [4] is discussed. 

The conventional pseudostate technique, proposed by Wilson 

Jr., superimposes the gravity of planet over that of the Sun 

within the pseudosphere, thereby considering the transfer 

trajectory problem as three body problem at the departure and 

arrival phases. This technique has been used to solve the 

gravity assist missions by Byrnes [8]. The State Transition 

Matrix (STM) has been used to synchronize the periapsis of 

the approach and exit legs of the flyby trajectory at a specified 

time. The pseudostate concept has been modified as a 

multistep technique to design the translunar and cislunar 

missions by Byrnes and Hooper [9]. They incorporated 

additional perturbations also in the multistep technique. 

Sergeyevsky et al. [10] applied the one-step pseudostate 

technique for direct interplanetary transfers. He assumed 

rectilinear hyperbolas for the planetocentric departure and 

arrival phases which removed the complicated computations 

involving STM. Ramanan [7] used the impact pseudostate 

technique for the arrival phase of the lunar transfer trajectory 

and presented an integrated approach to generate the lunar 

transfer trajectory design. Since the position and velocity 

vectors are parallel for a rectilinear hyperbola, there arises 

difficulty in fixing the orientation of the hyperbolic orbit 

plane. This design results in impact with the planets, which is 

not desirable in actual mission scenario. A nonimpact 

algorithm in the context of lunar orbiter mission to generate 

the transfer trajectory was proposed by Ramanan and 

Adimurthy [11]. They obtained the lunar parking orbit 

characteristics based on spherical trigonometry relations and 

tuned them to achieve the arrival excess velocity vector. The 

lunar transfer trajectory design obtained using this technique 

was used as the initial guess for numerical search. The refined 

design is found to be in the close neighborhood of the 

pseudostate design [12]. An iterative analytical method based 

on pseudostate technique for interplanetary orbiter missions 

has been proposed by Parvathi and Ramanan [4]. An 

analytical tuning strategy along with iterations upon the 

pseudostates resulted in reduction in target deviations greatly. 

This method also clearly distinguishes the four distinct 

transfer design options.  
In this paper, the minimum energy opportunity is 

obtained through a grid search over the departure dates and 

flight durations using the conventional patched conic 

technique. For a fixed departure date and a flight duration, the 

excess velocity vectors are calculated for the departure and 

arrival phases from the Lambert problem connecting the 

planet positions on appropriate dates. The trajectory design is 

carried out using the iterative analytical methods using 

patched conic and pseudostate techniques as given in section 

V. The link between the excess velocity vector and the 

parking orbit/hyperbolic orbit characteristics is given in 

section III. Section IV provides a detailed account of the 

analytical tuning strategy used to modify the hyperbolic orbit 

characteristics such that excess velocity vector is achieved at 

the MSI. The relations and the strategy described in the 

sections III and IV are used in section V. 

 

3. DETERMINATION OF PARKING ORBIT / 

HYPERBOLIC ORBIT CHARACTERISTICS 

 

The size, shape and inclination of the departure parking orbit 

are assumed. For an orbiter mission, the periapsis altitude and 

the inclination of the arrival parking orbit are specified. For 

minimizing the TPI and POI velocity impulses, it is essential 

that (i) the parking orbit plane is coplanar with the hyperbolic 

orbit plane, (ii) the location of TPI/POI is at the periapsis of 

the parking orbit and (iii) the argument of periapsis (AOP) of 

the hyperbolic trajectory is the same as the argument of 

periapsis of the elliptical parking orbit or the argument of 

latitude of the circular parking orbit. These conditions lead to 



tangential and horizontal injection of the velocity impulse. 

The geometry of transfer trajectory is given in Figure 1. 

 
Figure 1. Geometry of the transfer trajectory 

 

The hyperbolic orbit characteristics that achieves the 

excess velocity vector asymptotically must be obtained and 

modified using the analytical tuning strategy, given in section 

IV, to achieve the excess velocity vector at the MSI.  

The semi-major axis of the hyperbolic orbit is given by: 

 

𝑎∞ = −𝜇(.)/v∞
2                   (1) 

The dot given in equation (1) represents either D (departure 

planet) or A (arrival planet). The related eccentricity is given 

by: 

𝑒∞ = 1 + (𝑟𝑝∞v∞
2/𝜇(.))                      (2) 

 

From the geometry given in Figure 1, the right ascension of 

ascending node (RAAN) and the argument of periapsis 

(AOP) of the hyperbolic transfer trajectory are derived using 

spherical trigonometric relations [7]. A major assumption 

used in the derivation is that the planets are spherical and only 

respective planet act on the spacecraft within its 

pseudosphere.  

            𝑠𝑖𝑛(𝛼∞ −  𝛺∞) = 𝑡𝑎𝑛 𝛿∞ / 𝑡𝑎𝑛 𝑖∞          (3) 

𝑠𝑖𝑛(𝑢∞ + 𝜃∞) =  𝑠𝑖𝑛 𝛿∞ / 𝑠𝑖𝑛 𝑖∞           (4) 

where  𝜃∞ is given by: 

𝜃∞ = 𝑐𝑜𝑠−1(1/𝑒∞)                    (5) 

and the argument of latitude is given by: 

𝑢∞ = 𝜔∞ + 𝜈𝑝∞
                              (6) 

When the injection is at the periapsis, 𝜈𝑝∞
= 0.  

The equations (3) and (4) have two solutions, viz. 

 

            𝛺∞|1 = 𝛼∞ − 𝑠𝑖𝑛−1(𝑡𝑎𝑛 𝛿∞ /𝑡𝑎𝑛 𝑖∞)         (7) 

          𝛺∞|2 = 𝛼∞ − 180 + 𝑠𝑖𝑛−1(𝑡𝑎𝑛 𝛿∞ /𝑡𝑎𝑛 𝑖∞)    (8) 

𝜔∞|1 = 𝑠𝑖𝑛−1(𝑠𝑖𝑛 𝛿∞/𝑠𝑖𝑛 𝑖∞) − 𝜃∞            (9) 

          𝜔∞|2 = 180 − 𝑠𝑖𝑛−1(𝑠𝑖𝑛 𝛿∞/𝑠𝑖𝑛 𝑖∞) − 𝜃∞      (10) 

These solutions correspond to the two possible geometries 

that result in two hyperbolic orbit planes containing the 

excess velocity vector, (i) while ascending (ii) while 

descending. The two geometries at the departure and the 

arrival planets result in four transfer trajectory design options. 

The four design options are given in Table 1. 

 

Table 1. Transfer trajectory design options 

Transfer trajectory 

options 

Departure Arrival 

Option 1-1 (𝛺∞𝐷
|1, 𝜔∞𝐷

|1) (𝛺∞𝐴
|1, 𝜔∞𝐴

|1) 

Option 1-2 (𝛺∞𝐷
|1, 𝜔∞𝐷

|1) (𝛺∞𝐴
|2, 𝜔∞𝐴

|2) 

Option 2-1 (𝛺∞𝐷
|2, 𝜔∞𝐷

|2) (𝛺∞𝐴
|1, 𝜔∞𝐴

|1) 

Option 2-2 (𝛺∞𝐷
|2, 𝜔∞𝐷

|2) (𝛺∞𝐴
|2, 𝜔∞𝐴

|2) 

 

4. ANALYTICAL TUNING STRATEGY 

 

To achieve the asymptotic excess velocity vector at the 

MSI/pseudosphere of the planet, the hyperbolic orbit 

characteristics must be modified. This is done using an 

analytical tuning strategy adapted from Ref. [11] and is 

described below. 

1. Fix a periapsis (𝑟𝑃∞) and an inclination (𝑖∞) of the 

hyperbola which is same as that of the parking orbit. Fix 

a duration (MSI/sweep-back/sweep-forward duration) 

for reaching the boundary of the MSI/pseudosphere from 

the periapsis. 

2. Compute the semi-major axis (𝑎∞) and the related 

eccentricity (𝑒∞) of the hyperbola using Eq. (1) and Eq. 

(2) respectively. 

3. Compute two values of RAAN (𝛺∞) and AOP (𝜔∞) from 

Eq. (7) to Eq. (10), and choose one of the four transfer 

trajectory options. 

4. Propagate the hyperbolic characteristics 

(𝑎∞,𝑒∞, 𝑖∞, 𝛺∞, 𝜔∞, 𝜈∞ = 𝜈𝑝∞
= 0) forward for the 

sweep-back duration/ backward for sweep-forward 

duration under the spherical force model. Compute the 

position vector (𝒓𝒉) and the propagated excess velocity 

vector (𝐯𝐡). 



5. Compute 𝜖 = |𝐯𝐡 − 𝐯∞|. If ϵ is less than a pre-fixed 

tolerance value, the parking orbit characteristics is 

achieved, otherwise continue with the following steps. 

6. Find the angle (Ψ) between the desired velocity vector 

(𝐯∞) and the propagated velocity vector (𝐯𝐡). 

7. The shift in AOP location is computed as: 

 

∆𝜔 = 𝛹                    (11) 

8. Compute the new location of the periapsis of the 

hyperbolic trajectory as: 

𝜔∞ = 𝜔∞ ± 𝛥𝜔                       (12) 

9. Compute the new semi-major axis of the rotated 

hyperbolic trajectory from the equation: 

 

                     𝑎∞ = − 𝜇(.)/ (v∞
2  −  

2𝜇(.)

𝑟ℎ
)               (13) 

 

and the related eccentricity from Eq. 2. 

10. Repeat the steps (4) to (9) till the tolerance value for ϵ in 

the step (5) is achieved. 

 

5. ITERATIVE ANALYTICAL METHODS 

 

The iterative analytical methods can identify the four distinct 

transfer trajectory design options for interplanetary missions. 

Two methods are considered to evaluate the distinct design 

options and the resulting deviations in the target conditions. 

These iterative analytical methods are based on (i) patched 

conic technique and (ii) pseudostate technique. The details of 

iterative pseudostate method is available in Ref. [4] and the 

iterative patched conic method is described below. 

 

5.1. Iterative patched conic method 

 

The iterative patched conic method determines the distinct 

excess velocity vectors together with the related hyperbolic 

orbit characteristics. The three segments of interplanetary 

transfer considered in the patched conic technique for an 

example mission, Earth-Mars, is given in Figure 2. Initially, 

Lambert conic is determined by connecting the planet 

positions at the departure and arrival dates and the hyperbolic 

orbit characteristics are computed through steps (1) to (6). 

Using this Lambert conic, the patch points at the MSI are 

obtained at the departure and arrival ends through steps (7) to 

(10). Later, Lambert conic is determined by connecting the 

patch point positions for a modified flight duration that 

excludes the MSI durations. 

The iteration on the patch point results in four distinct 

transfer trajectory options. 

1. Fix the periapsis altitude and inclination of the departure 

and arrival hyperbolas. 

2. Fix the departure date and flight duration (𝑡𝐹𝐷) of the 

minimum opportunity transfer. Fix the MSI duration for 

the departure and arrival planets as 𝑡𝐷  and 𝑡𝐴 days. 

 

 
Figure 2. Patched conic approximation for  

Earth-Mars interplanetary transfer. 

 

3. Set the heliocentric states of the departure planet on the 

departure date (𝑹𝑫, 𝑽𝑫) and the arrival planet on the 

arrival date (𝑹𝑨, 𝑽𝑨). 

4. Determine the heliocentric Lambert conic connecting the 

position vectors (𝑹𝑫, 𝑹𝑨) for the given flight duration 

(𝑡𝐹𝐷). Compute the corresponding heliocentric velocity 

vectors of the spacecraft in the transfer trajectory: 𝑽𝒑𝒄𝑫
 

and 𝑽𝒑𝒄𝑨
. 

5. Compute the planetocentric excess velocity vectors of 

the spacecraft at the departure and arrival planets that is, 

𝐯∞𝑫
 and 𝐯∞𝑨

 respectively. 

           𝐯∞𝑫
= |𝑽𝒑𝒄𝑫

− 𝑽𝑫|                       (14) 

𝐯∞𝑨
= |𝑽𝒑𝒄𝑨

− 𝑽𝑨|                    (15) 

6. From the excess velocity vectors, find the characteristics 

(𝑎∞, 𝑒∞, 𝑖∞, 𝛺∞, 𝜔∞, 𝜈∞ = 𝜈𝑝∞
= 0) of departure and 

arrival hyperbolas using the procedure described in 

section III. One of the four options is chosen for 

modification such that the target parameters are 

achieved. 

The following steps make the departure hyperbolic orbit 

characteristics distinct from the other options. The 

process can be applied for other options as well. 

7. Propagate the departure hyperbolic orbit characteristics 

forward for the corresponding prefixed MSI duration 

(𝑡𝐷) and find the planetocentric velocity vector (𝐯𝐡𝑫
). 

Similarly, propagate the arrival hyperbolic orbit 

characteristics backward from APO periapsis for the 



prefixed MSI duration (𝑡𝐴) and find the arrival 

planetocentric velocity vector (𝐯𝐡𝑨
).  

8. The desired and the propagated excess velocity vectors 

that is., 𝐯∞𝑫
 and 𝐯𝐡𝑫

 are matched at the MSI of the 

departure planet using the tuning strategy described in 

section IV. The tuning of desired and propagated excess 

velocity vectors at the arrival planet is also carried out 

using the same strategy. 

9. Obtain the position vectors at the MSI of the departure 

(𝒓𝒉𝑫
) and the arrival (𝒓𝒉𝑨

) planets by propagating the 

respective updated/tuned hyperbolic orbit 

characteristics. 

10. The planetocentric position vectors of the patch points at 

MSI are transformed into heliocentric position vectors. 

 

𝑹𝑫
𝑴𝑺𝑰 = 𝑹𝑫

𝒕𝑫 + 𝒓𝒉𝑫
                          (16) 

𝑹𝑨
𝑴𝑺𝑰 = 𝑹𝑨

𝒕𝑨 + 𝒓𝒉𝑨
                          (17) 

where 𝑹𝑫
𝒕𝑫  is the position vector of the departure planet 

after 𝑡𝐷 days since departure epoch and 𝑹𝑫
𝑴𝑺𝑰 is the 

position vector of the patch point at the MSI of the 

departure planet. Similarly in Eqn. (17), 𝑹𝑨
𝒕𝑨  is the 

position vector of the arrival planet before 𝑡𝐴 days from 

the arrival epoch and 𝑹𝑨
𝑴𝑺𝑰 is the position vector of the 

patch point at the MSI of the arrival planet. 

11. Determine Lambert conic connecting the heliocentric 

patch point positions for a flight duration defined by 

(𝑡𝐹𝐷 − 𝑡𝐷 − 𝑡𝐴). The heliocentric velocity vectors at the 

patch points in the Lambert conic are 𝑽𝒑𝒄𝑫
𝑴𝑺𝑰 and 

𝑽𝒑𝒄𝑨
𝑴𝑺𝑰 respectievely. 

12. Compute the planetocentric velocity vectors of the 

spacecraft at the patch points that is, 𝐯∞𝑫
 and 𝐯∞𝑨

 

respectively, 

 

𝐯∞𝑫
= |𝑽𝒑𝒄𝑫

𝑴𝑺𝑰 −  𝑽𝑫
𝒕𝑫|                    (18) 

𝐯∞𝑨
= |𝑽𝒑𝒄𝑨

𝑴𝑺𝑰 −  𝑽𝑨
𝒕𝑨|                     (19) 

where  𝑽𝑫
𝒕𝑫   is the velocity vector of the departure planet 

after 𝑡𝐷 days since departure epoch and  𝑽𝑨
𝒕𝑨  is the 

velocity vector of the arrival planet before 𝑡𝐴 days from 

the arrival epoch. 

13. From the excess velocity vectors, find the characteristics 

(𝑎∞, 𝑒∞, 𝑖∞, 𝛺∞, 𝜔∞, 𝜈∞ = 𝜈𝑝∞
= 0) of departure and 

arrival hyperbolas. 

14. Repeat the steps (7) to (10) and find the difference 

between two successive position vectors of the patch 

points at both the departure and arrival planets. If the 

differences are less than the predefined small values, 

then the transfer trajectory design is obtained. Otherwise 

the steps (11) to (14) are repeated. 

At the end of these steps, the transfer trajectory design for one 

of the options is obtained. We can apply these steps for the 

other three design options. 

 

5.2. Iterative pseudostate method 

 

The iterative analytical pseudostate method is available in 

Ref [4] and so, not given herein. 

 

6. RESULTS 

 

The design analysis tools based on the iterative analytical 

methods, described in the previous sections, have been used 

to analyze the distinct design for minimum energy Earth-

Mars orbiter mission in 2018. A typical minimum energy 

opportunity, based on grid search, is obtained using the 

conventional patched conic technique. A search over a range 

of departure dates and flight durations results in a minimum 

energy opportunity of 12 May 2018 0 hours UTC with a flight 

duration 204 days. The earth parking orbit is assumed as 300 

x 25,000 km and inclination of 75 degree with respect to the 

Earth equator and equinox of J2000. The mars parking orbit 

is assumed as 300 km circular and inclination of 75 degree 

with respect to the Mars equator and equinox of J2000 [13]. 

The MSI/pseudosphere duration for Earth and Mars are 

considered as 3 and 2 days respectively. The DE 405 JPL 

ephemeris has been used to find the position of planets. 

 

Table 2. Excess velocity vectors from the 

 conventional patched conic method 

Parameters Conventional patched  

conic method 

v∞D(km/s) 2.7891 

∝∞𝐷(deg) 321.4262 

𝛿∞𝐷(deg) -36.8551 

v∞A(km/s) 2.9621 

∝∞𝐴(deg) 245.6645 

𝛿∞𝐴(deg) 9.2562 

 

The trajectory design is done using different 

analytical methods. The departure and arrival excess velocity 

vectors obtained from the conventional patched conic method 

is given in Table 2. This method cannot identify the distinct 

design options due to the absence of an iterative procedure 

connecting the departure and arrival phases. The proposed 

iterative method based on patched conic technique identifies 

the four distinct design options and the corresponding excess 

velocity vectors are given in Table 3. The iterative 

pseudostate technique also identifies the four distinct design 

options and Table 4 lists the corresponding excess velocity 



vectors from Ref [4]. The related hyperbolic characteristics 

obtained from the conventional patched conic method is 

given in Table 5. Note that the design options 1-1 and 1-2 

result in entirely different arrival hyperbolas even if the 

departure conditions are exactly the same. Similarly the 

design options 1-1 and 2-1 result in the same arrival 

hyperbolas even if the departure conditions are entirely 

different. This is not feasible and is due to the inability of the 

method to distinguish the design options. 

 

Table 3. Excess velocity vectors from the  

proposed iterative patched conic method 

Parameters Iterative patched conic method 

Option 

1-1 

Option 

1-2 

Option 

2-1 

Option 

2-2 

v∞D(km/s) 2.7826 2.7839 2.7779 2.7791 

∝∞𝐷(deg) 321.65 321.68 321.53 321.55 

𝛿∞𝐷(deg) -37.205 -37.285 -36.842 -36.923 

v∞𝐴(km/s) 2.9602 2.9598 2.9614 2.9610 

∝∞𝐴(deg) 245.51 245.49 245.60 245.56 

𝛿∞𝐴(deg) 9.5035 9.5434 9.2193 9.2594 

 

Table 4. Excess velocity vectors from the iterative 

pseudostate method [4] 

Parameters Iterative pseudostate method 

Option 

1-1 

Option 

1-2 

Option 

2-1 

Option 

2-2 

v∞D(km/s) 2.7893 2.7906 2.7847 2.7859 

∝∞𝐷(deg) 321.921 321.944 321.785 321.808 

𝛿∞𝐷(deg) -37.1345 -37.2146 -36.764 -36.8449 

v∞𝐴(km/s) 2.9609 2.9605 2.9622 2.9618 

∝∞𝐴(deg) 245.516 245.484 245.599 245.567 

𝛿∞𝐴(deg) 9.5043 9.5446 9.2203 9.2607 

 

The hyperbolic orbit characteristics obtained from the 

proposed iterative patched conic method is given in Table 6. 

Note that the design options are distinct. There is marginal 

but still significant difference in TPI angles viz., departure 

RAAN and AOP, between the design options 1-1 and 1-2 

(0.057 degree and 0.072 degree respectively). These design 

options result in entirely different arrival hyperbolas. Similar 

trend is observed for the design options 2-1 and 2-2. This 

reflects the high sensitivity of the arrival conditions to the 

departure angles. 

 

Table 5. Design options obtained from the conventional 

patched conic method 
Parameter

s 

Option  

1-1 

Option  

1-2 

Option  

2-1 

Option  

2-2 

𝑎∞𝐷 (km) -51239.9 -51239.9 -51239.9 -51239.9 

𝑒∞𝐷 1.13033 1.13033 1.13033 1.13033 

𝑖∞𝐷 (deg) 75 75 75 75 

𝛺∞𝐷 (deg) 333.0131 333.0131 129.8392 129.8392 

𝜔∞𝐷(deg) 169.3999 169.3999 64.5845 64.5845 

𝑎∞𝐴(km) -4881.1 -4881.1 -4881.1 -4881.1 

𝑒∞𝐴 1.75744 1.75744 1.75744 1.75744 

𝑖∞𝐴 (deg) 75 75 75 75 

𝛺∞𝐴(deg) 68.1673 243.1616 68.1673 243.1616 

𝜔∞𝐴(deg) 115.0951 314.2668 115.0951 314.2668 

 

Table 6. Design options obtained from the proposed 

iterative patched conic method 

Parameters Option 

1-1 

Option 

1-2 

Option 

2-1 

Option 

2-2 

a∞D (km) -58965.7 -58904.1 -59206.2 -59145.1 

e∞D 1.11325 1.11337 1.11279 1.11291 

i∞D (deg) 75 75 75 75 

Ω∞D (deg) 333.3889 333.4465 129.9454 129.9341 

ω∞D(deg) 167.378 167.305 64.457 64.554 

a∞A (km) -4980.0 -4981.3 -4975.7 -4977.1 

e∞A 1.74240 1.74220 1.74304 1.74284 

i∞A (deg) 75 75 75 75 

Ω∞A(deg) 68.0878 242.9041 68.0925 243.0652 

ω∞A(deg) 115.178 314.908 115.458 314.599 

 

Table 7 shows the target conditions achieved upon numerical 

propagation of these design options under a force model. The 

force model used in this paper includes Sun and Earth for 3 

days, Sun alone for 199 days, and Sun and Mars for 2 days. 

The closest approach altitude desired is 300 km, however 

with the assumptions involved in iterative patched conic 

method, the achievable CAA ranges from 192,798 to 212,644 

km. To account for the modelling errors, trans correction 

maneuvers (TCM) are required for these designs to achieve 

the desired target conditions. The TCM requirement for 



iterative patched conic design is about 11-12 m/s is and is 

applied after 13 days from the Earth departure. The estimated 

TCM magnitudes are given in Table 7. 

Table 7. Achievable accuracies from the patched conic 

methods 
Parameters Proposed iterative patched conic design 

Option 

1-1 

Option 

1-2 

Option 

2-1 

Option 

2-2 

CAA (km) 192,798 197,674 207,562 212,644 

Tp (UTC)  

DD/MM/Y

YYY 

HH:MM:SS 

2 Dec 

2018 

10:06:53.

608 

2 Dec 

2018  

10:06:17.

249 

2 Dec 

2018 

12:09:31.

693 

2 Dec 

2018 

12:09:02.

922 

TCM (m/s)  12 11.61 11.64 11.61 

 

 The hyperbolic orbit characteristics obtained from 

the iterative pseudostate technique is given in Table 8. The 

target conditions achieved upon numerical propagation of the 

pseudostate designs under the same force model is given in 

Table 9. The CAA achieved ranges from 1,965 to 11,457 km. 

The difference in TPI angles between the iterative patched 

and iterative pseudostate methods for option 1-1 are 0.24 deg 

(RAAN) and 0.14 deg (AOP). These differences are large and 

results in improved CAA upon numerical propagation, that 

is, from 192,798 km to 1,965 km. The time of periapsis is 

deviated by about 10 hours in the case of iterative patched 

conic design whereas the deviation is about 2 hours for the 

iterative pseudostate design (cf. Table 7 and 9). The target 

inclination is not achieved since the improved pseudostate 

design still needs refinement. The TCM required for the 

pseudostate design is found to be less than 1 m/s to achieve 

the desired CAA and inclination at the specified periapsis 

time and is given in Table 9 [4]. The importance of the precise 

initial conditions for interplanetary transfer missions is 

illustrated. The numerical refinement of the iterative patched 

conic design takes about 420 seconds in an Intel core i5 

machine whereas the iterative pseudostate design takes about 

7 seconds. 

 The TPI and POI velocity impulses required for 

Earth-Mars 2018 orbiter mission from different analytical 

designs are given in Tables 10 and 11. The difference in total 

velocity impulse between different designs is marginal. 

Hence, it is evident that there is no considerable increase in 

the required velocity impulse to reach Mars with an improved 

closest approach altitude of about 1,965 km from 212,644 

km. 

 

Table 8. Design options obtained from the iterative 

pseudostate method [4] 
Parameter

s 

Option  

1-1 

Option  

1-2 

Option  

2-1 

Option  

2-2 

𝑎∞𝐷 (km) -58625.7 -58564.6 -58859.5 -58799.1 

𝑒∞𝐷 1.11391 1.11403 1.11345 1.11357 

𝑖∞𝐷 (deg) 75 75 75 75 

𝛺∞𝐷 (deg) 333.627 333.685 130.236 130.225 

𝜔∞𝐷(deg) 167.521 167.448 64.444 64.542 

𝑎∞𝐴(km) -4977.4 -4978.7 -4973.1 -4974.5 

𝑒∞𝐴 1.74279 1.74259 1.74343 1.74323 

𝑖∞𝐴 (deg) 75 75 75 75 

𝛺∞𝐴(deg) 68.086 242.901 68.091 243.062 

𝜔∞𝐴(deg) 115.168 314.900 115.447 314.591 

 

Table 9. Achievable accuracies from the iterative 

pseudostate method [4] 
Parameters Iterative pseudostate design 

Option 

1-1 

Option 

1-2 

Option 

2-1 

Option 

2-2 

CAA (km) 1,965 4,727 7,084 11,457 

Tp (UTC) 

DD/MM/Y

YYY 

HH:MM:SS 

2 Dec 

2018 

01:36:00.

766 

2 Dec 

2018 

01:42:27.

149 

2 Dec 

2018 

02:37:05.

208 

2 Dec 

2018 

02:43:55.

109 

TCM (m/s)  Less than 1 m/s 

 

Table 10. Velocity impulses from the patched conic designs 

Velocity 

impulse 

s (m/s) 

Convent

ional 

patched 

conic 

design 

Design from the proposed iterative 

patched conic method 

Option 

1-1 

Option 

1-2 

Option 

2-1 

Option 

2-2 

TPI 1355.22 1309.93 1310.25 1308.7

1 

1309.0

2 

POI 2248.21 2232.78 2232.57 2233.4

4 

2233.2

3 

 

 



Table 11. Velocity impulses from the iterative pseudostate 

designs [4] 
Velocity 

impulses 

(m/s) 

Design from the iterative pseudostate method 

Option 

1-1 

Option 

1-2 

Option 

2-1 

Option 

2-2 

TPI 1311.68 1311.99 1310.48 1310.79 

POI 2233.18 2232.98 2233.84 2233.63 

 

7. CONCLUSIONS 

 

The proposed iterative patched conic method is efficient in 

identifying the four distinct transfer trajectory design options 

available for a given departure date and a flight duration. A 

Fortan 95 code has been developed for design analysis using 

the proposed method. The numerical propagation of the 

proposed design achieves a closest approach altitude of 

191,798 to 212,644 km. A trans correction maneuver of about 

12 m/s is required for the design to meet the desired target 

conditions. This indicates the high sensitivity of the arrival 

conditions to the initial departure conditions. The proposed 

design is compared with the iterative pseudostate design. The 

latter design achieves the target conditions with a TCM less 

than 1 m/s. The reduction in deviation of closest approach 

altitude is about 98% and the related time is 95%. The 

iterative patched conic design requires about 420 seconds for 

numerical refinement while the iterative pseudostate method 

requires less than 7 seconds. The iterative pseudostate 

method provides a better initial guess and takes much less 

time for numerical refinement. However, the iterative 

patched conic method can be used as an alternative design 

analysis tool considering its simplicity in formulation that 

involves two-body models. Both these iterative analytical 

methods generate better designs when compared to the 

conventional patched conic method. 
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