Analysis of Electric Propulsion Capabilities in Establishment and Keeping of Formation Flying Nanosatellites

Eviatar Edlerman and Igal Kronhaus
Introduction

* Nanosatellites are fully capable satellites with a mass range of 1-10 kg.
Introduction

* Nanosatellites are fully capable satellites with a mass range of 1-10 kg.

* CubeSats have strict constraints on allowed mass, volume, electrical power, and carry only limited sensor and actuator capability
Introduction

* Nanosatellites are fully capable satellites with a mass range of 1-10 kg.

* CubeSats have strict constraints on allowed mass, volume, electrical power, and carry only limited sensor and actuator capability

* Nanosatellite formation can increase the functionality of these satellites
Introduction

* Nanosatellites are fully capable satellites with a mass range of 1-10 kg.

* CubeSats have strict constraints on allowed mass, volume, electrical power, and carry only limited sensor and actuator capability

* Nanosatellite formation can increase the functionality of these satellites

* Miniaturized electric propulsion (EP) system offer an advantage over chemical propulsion thrusters by their smaller volume and mass, offer new possibilities for nanosatellite orbit and attitude control
Research Objectives

* Define typical Nanosatellite mission constraints
Research Objectives

* Define typical Nanosatellite mission constraints

* Design very low thrust EP control algorithm for long-term cluster flight
Research Objectives

* Define typical Nanosatellite mission constraints

* Design very low thrust EP control algorithm for long-term cluster flight

* Offer different methods of using the controller in the presence of mission constraints and while causing minimal impact on other mission tasks
Research Objectives

* Define typical Nanosatellite mission constraints

* Design very low thrust EP control algorithm for long-term cluster flight

* Offer different methods of using the controller in the presence of mission constraints and while causing minimal impact on other mission tasks

* Validate these methods on a high fidelity simulation
CubeSat Constraints

* Spacecraft structure constraints
* Attitude constraints
* Electrical power constraints
* Orbital constraints

<table>
<thead>
<tr>
<th>Model</th>
<th>Mass [kg]</th>
<th>Volume [cm^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1U</td>
<td>1.33</td>
<td>1000</td>
</tr>
<tr>
<td>3U</td>
<td>4</td>
<td>3000</td>
</tr>
<tr>
<td>6U</td>
<td>8</td>
<td>6000</td>
</tr>
</tbody>
</table>
A requirement of pointing one of the satellite axis to a specific direction allows only one rotational degree of freedom (DOF).

* Spacecraft structure constraints
* Attitude constraints
* Electrical power constraints
* Orbital constraints
CubeSat Constraints

* Spacecraft structure constraints
* Attitude constraints
* Electrical power constraints
* Orbital constraints

Angular rate limit - 1 deg/s
CubeSat Constraints

* Spacecraft structure constraints

* Attitude constraints

* Electrical power constraints

* Orbital constraints

<table>
<thead>
<tr>
<th>Model</th>
<th>SP power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1U</td>
<td>10</td>
</tr>
<tr>
<td>3U</td>
<td>26</td>
</tr>
<tr>
<td>6U</td>
<td>40</td>
</tr>
</tbody>
</table>
CubeSat Constraints

* Spacecraft structure constraints

* Attitude constraints

* Electrical power constraints

* Orbital constraints

<table>
<thead>
<tr>
<th>Model</th>
<th>SP power [W]</th>
<th>Battery capacity [Wh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1U</td>
<td>10</td>
<td>19.24</td>
</tr>
<tr>
<td>3U</td>
<td>26</td>
<td>38.5</td>
</tr>
<tr>
<td>6U</td>
<td>40</td>
<td>77</td>
</tr>
</tbody>
</table>
CubeSat Constraints

* Spacecraft structure constraints

* Attitude constraints

* Electrical power constraints

* Orbital constraints

<table>
<thead>
<tr>
<th>Model</th>
<th>Production SP power [W]</th>
<th>Storage Battery capacity [Wh]</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1U</td>
<td>10</td>
<td>19.24</td>
<td>• 33 % housekeeping</td>
</tr>
<tr>
<td>3U</td>
<td>26</td>
<td>38.5</td>
<td>• 33 % EP system</td>
</tr>
<tr>
<td>6U</td>
<td>40</td>
<td>77</td>
<td>• 33 % payload</td>
</tr>
</tbody>
</table>
CubeSat Constraints

* Spacecraft structure constraints
* Attitude constraints
* Electrical power constraints
* Orbital constraints

Inter satellite distance bounded by 1000 km
* Spacecraft structure constraints
* Attitude constraints
* Electrical power constraints
* Orbital constraints

Orbit height have to be higher than 600 km
Very Low Thrust Orbit Control

* Simple for implementation on real time systems
Very Low Thrust Orbit Control

* Simple for implementation on real time systems

* On off controller – constant thrust magnitude
Very Low Thrust Orbit Control

* Simple for implementation on real time systems

* On off controller – constant thrust magnitude

* Cyclic controller - required information is limited to the nearest neighbor
Very Low Thrust Orbit Control

* Simple for implementation on real time systems

* On off controller – constant thrust magnitude

* Cyclic controller - required information is limited to the nearest neighbor

* Use mean orbital elements to reduce control effort
Very Low Thrust Orbit Control

* Simple for implementation on real time systems

* On off controller – constant thrust magnitude

* Cyclic controller - required information is limited to the nearest neighbor

* Use mean orbital elements to reduce control effort

\[
T_i = \begin{cases}
0 & \Delta a_{ij} \Delta \lambda_{ij} \geq 0 \\
-T_{max} \text{sign} \left(\Delta a_{ij} \right) & \Delta a_{ij} \Delta \lambda_{ij} < 0
\end{cases}
\]

T is a thrust command in the in-track direction
a is the semi major axis
\lambda is the argument of latitude and

\[
j = \begin{cases}
i + 1 & i = 1, 2, 3 \ldots N - 1 \\
1 & i = N
\end{cases}
\]
Very Low Thrust Orbit Control

* Simple for implementation on real time systems

* On off controller – constant thrust magnitude

* Cyclic controller - required information is limited to the nearest neighbor

* Use mean orbital elements to reduce control effort

\[
T_i = \begin{cases}
0 & \Delta a_{ij}, \Delta \lambda_{ij} \geq 0 \\
-T_{\max} \text{sign} \left(\Delta a_{ij} \right) & \Delta a_{ij}, \Delta \lambda_{ij} < 0
\end{cases}
\]

T is a thrust command in the in-track direction
a is the semi major axis
\(\lambda \) is the argument of latitude and

\[
j = \begin{cases}
i + 1 & i = 1, 2, 3, ..., N - 1 \\
1 & i = N
\end{cases}
\]
Very Low Thrust Orbit Control

* Simple for implementation on real time systems

* On off controller – constant thrust magnitude

* Cyclic controller - required information is limited to the nearest neighbor

* Use mean orbital elements to reduce control effort

\[T_i = \begin{cases} 0 & \Delta a_{ij}, \Delta \lambda_{ij} \geq 0 \\ -T_{\text{max}} \cdot \text{sign} \left(\Delta a_{ij} \right) \Delta a_{ij}, \Delta \lambda_{ij} < 0 \end{cases} \]

T is a thrust command in the in-track direction
a is the semi major axis
\(\lambda \) is the argument of latitude and

\[j = \begin{cases} i + 1 & i = 1, 2, 3 \ldots N - 1 \\ 1 & i = N \end{cases} \]
* Non-constrained case ensures an ideal performance of the above controller

* However in a real power constrained mission, this naive approach might cause the battery to reach high DOD values.

* We offer 4 different methods to cope with this challenge:
 * Fixed time slots method
 * Dynamic time slots method
 * Cosine Method
 * Double Cosine Method
Fixed Time Slots Method

* Divide satellite orbit to time slots

* Each time slot is dedicated for different mission

* In this example satellite collect sun during the day and perform orbit control during the night – reduce DOD values

<table>
<thead>
<tr>
<th>Sun Pointing</th>
<th>Orbit Control</th>
</tr>
</thead>
</table>

Time
Fixed Time Slots Method

* Divide satellite orbit to time slots

* Each time slot is dedicated for different mission

* In this example satellite collect sun during the day and perform orbit control during the night – reduce DOD values

* Orbit can be divided to more slots based on the mission requirements

* Orbit control “duty cycle” is proportional to maximal inter-satellite distance (ISD)
Dynamic Time Slots Method

* Satellite collects data parameters from different subsystems, data that can be valuable for decision making
Dynamic Time Slots Method

* Satellite collects data parameters from different subsystems, data that can be valuable for decision making
* Time slots can be set based on real time collected data such as:
 * Sensors data
 * Inter-satellite distance
 * Ground station access
 * Payload activation
* Satellite collects data parameters from different subsystems, data that can be valuable for decision making
* Time slots can be set based on real time collected data such as:
 * Sensors data
 * Inter-satellite distance
 * Ground station access
 * Payload activation
* In this case we use battery DOD status

Dynamic Time Slots Method
Cosine Method

* SP maximum power is reached when the SP are aligned with the sun vector
Cosine Method

* SP maximum power is reached when the SP are aligned with the sun vector

* The remaining DOF can be used to bring the thrust vector as close as possible to the velocity vector

\[
\begin{align*}
\hat{z}_B &= \mathbf{s} \\
y_B &= \mathbf{s} \times \mathbf{v} \\
x_B &= y_B \times z_B
\end{align*}
\]
Cosine Method

* SP maximum power is reached when the SP are aligned with the sun vector.

* The remaining DOF can be used to bring the thrust vector as close as possible to the velocity vector.

* Analysis shows that even 20° misalignment have negligible effect on the controller performance.
Double Cosine Method

* Enhance cosine method performance by creating an additional error cone around the sun vector.

\[P = P_0 \cos(\theta) \]
Double Cosine Method

* Enhance cosine method performance by creating an additional error cone around the sun vector.

* Control the allowed loss in power generation
Double Cosine Method

- Enhance cosine method performance by creating an additional error cone around the sun vector.

- Control the allowed loss in power generation

- Control the allowed thrust misalignment from the in-track direction
* Enhance cosine method performance by creating an additional error cone around the sun vector.

* Control the allowed loss in power generation

* Control the allowed thrust misalignment from the in-track direction

* Analytical expressions were developed to calculate the required orientation in real time
Numerical Simulation Setup

* FreeFlyer™ software were used as nonlinear orbit propagator that include:
 * Drag model
 * Solar radiation pressure
 * Earth zonal and tesseral potential terms
 * Moon gravity field and sun gravity field.
Numerical Simulation Setup

* FreeFlyer™ software were used as nonlinear orbit propagator that include:
 * Drag model
 * Solar radiation pressure
 * Earth zonal and tesseral potential terms
 * Moon gravity field and sun gravity field.

* FreeFlyer was also used to implement the closed loop controller and satellite logic using the built-in tools.
Numerical Simulation Setup

* FreeFlyer™ software were used as nonlinear orbit propagator that include:
 * Drag model
 * Solar radiation pressure
 * Earth zonal and tesseral potential terms
 * Moon gravity field and sun gravity field.

* FreeFlyer was also used to implement the closed loop controller and satellite logic using the built-in tools.

* We design a simplified electric power system model and embedded it in the FreeFlyer simulation.
Case Study

* A cluster of 3 6U CubeSats
* Deployable SP model
* EP thruster create 100 µN with Isp of 1000 s and power consumption of 13 W
* Cluster initial condition are based on PSLV orbit injection scenario with radius of 620 km
Non-constrained Performance

* To create reference to the other method we define the ideal performance of the controller.
Non-constrained Performance

* To create reference to the other method we define the ideal performance of the controller.

* The non constrained case assume that the satellite can point its thruster to the required thrust direction whenever needed.
To create reference to the other method we define the ideal performance of the controller.

The non constrained case assume that the satellite can point its thruster to the required thrust direction whenever needed.

Satellite attitude is changing according to this logic:

<table>
<thead>
<tr>
<th>Thrust required</th>
<th>No thrust required</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_B = T$</td>
<td>$z_B = s$</td>
</tr>
<tr>
<td>$y_B = T \times s$</td>
<td>$y_B = s \times v$</td>
</tr>
<tr>
<td>$z_B = y_B \times x_B$</td>
<td>$x_B = y_B \times z_B$</td>
</tr>
</tbody>
</table>
Non-constrained Performance

![Graph showing distance over time for different distances]
* Both methods meet the mission requirements
* Dynamic time slots method have lower ISD
* Maximal ISD is proportional to the “duty cycle”
* DOD can be trade to decrease max ISD
* Allocating too much slots will damage the method performance.
* Cosine methods allow satellite to perform its primary mission while orbit control is in the background

* Eliminating hard constraints offers new control possibilities

* Double cosine method offers the lowest ISD of all other methods and power losses due to SP misalignment is negligible
Results - Double Cosine Method

* Double cosine method increases available thrust arcs while have minimal effect on other mission tasks

* Double cosine method allows large portion of thrust in the in-track direction, reducing fuel consumption and convergence time
* Double cosine method increases available thrust arcs while have minimal effect on other mission tasks

* Double cosine method allows large portion of thrust in the in-track direction, reducing fuel consumption and convergence time
Results - Double Cosine Method

* Double cosine method increases available thrust arcs while have minimal effect on other mission tasks

* Double cosine method allows large portion of thrust in the in-track direction, reducing fuel consumption and convergence time
Conclusion

* To mitigate the along-track drift a cyclic controller based on a low-power EP was developed
Conclusion

* To mitigate the along-track drift a cyclic controller based on a low-power EP was developed

* Four methods were developed to cope with mission constraints
Conclusion

* To mitigate the along-track drift a cyclic controller based on a low-power EP was developed

* Four methods were developed to cope with mission constraints

* A high fidelity orbit simulation was used to test these methods
Conclusion

* To mitigate the along-track drift a cyclic controller based on a low-power EP was developed

* Four methods were developed to cope with mission constraints

* A high fidelity orbit simulation was used to test these methods

* The simulation shows that with only few grams of fuel the controller can eliminate the along-track drift and keep ISD within bounds
Conclusion

* To mitigate the along-track drift a cyclic controller based on a low-power EP was developed

* Four methods were developed to cope with mission constraints

* A high fidelity orbit simulation was used to test these methods

* The simulation shows that with only few grams of fuel the controller can eliminate the along-track drift and keep ISD within bounds

* It was demonstrated that the proposed methods presented here can maintain a formation of multiple nanosatellites for long periods using low power EP systems while working under real mission constraints.
Questions?