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ABSTRACT

Nanosatellite clusters are one of the current and future trends
in space technology. In order to maintain a satellite cluster,
over a long period of time, the nanosatellites need to mitigate
the alongtrack drift created by the initial orbit injection. In
the mass range of 1-10 kg, CubeSats have strict constraints
on allowed mass, volume, electrical power, and are equipped
with only limited sensor and actuator capability. State of the
art miniaturized electric propulsion (EP) systems are one op-
tion to realize the required orbit control capability. Due to
the low thrust provided by an EP system, long orbit control
maneuvers are required. Therefore, mission design is highly
effected by long-term attitude and power constraints. Assum-
ing a cyclic thrust controller, four methods were developed
to allocate the satellite power and attitude resources for or-
bit control. Two time division methods are developed that
allocate dedicated time slots for each of the satellite main
tasks. Alternatively, two cosine methods are presented that
utilize an error cone, around the required attitude, as a cri-
terion for selecting when to operate the thruster. As a test
case a typical deployment scenario was chosen with three 6U
CubeSats. The CubeSats are equipped with a 100 N thruster
with 1000 s specific impulse. Using a CubeSat power sys-
tem model and a high fidelity orbit simulation, it was shown
that all the resource allocation methods were successful in re-
alizing a CubeSat formation flying mission. The fuel mass
consumed was less than 2 g and the maneuver duration was
less than 20 days.

Index Terms— Electric propulsion, Nanosatellites, For-
mation Flying, Constraints

1. INTRODUCTION

Nanosatellites are fully capable satellites with a mass limit
of 10 kg. To increase the functionality of these satellites they
can be grouped together in a formation and act as a distributed
satellite. A distributed space system [1, 2] is a system that in-
clude two or more satellites that act together as one, this can
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increase the reliability and lower the cost compare to mono-
lithic satellite [3]. In order to maintain a satellite cluster over
a long period of time it is required that the inter-satellite dis-
tances (ISD) between the cluster agents will be controlled.
The cluster agents need to mitigate the along-track drift cre-
ated by the initial orbit injection, using the very limited re-
sources available onboard.

In recent years few formation flying demonstration where
conducted. In 2010 the PRISMA mission demonstrated au-
tonomous formation flying of two micro satellites [4, 5].
PRISMA main spacecraft weight 150 kg, delivered 300 W
and used a chemical propulsion system with 11 kg of fuel and
six 1 N thrusters. In 2014 CanX-4 and CanX-5 [6] demon-
strate a formation flying of two 6 kg nano-satellites. Each
satellite was equipped with 4 thrusters, 260 g of fuel and Isp
of 45 s. The SAMSON mission [7] will also test autonomous
formation flying of three 6U CubeSats using four 20 mN
thrusters with Isp of 35 s [8, 9].

As satellites become smaller the challenge of finding a
miniaturized propulsion system to provide formation flying
capabilities increase. Previous studies (for example [10])
show that electric propulsion (EP) can be used for demanding
orbit control maneuvers. Miniaturized EP systems offer an
advantage over chemical propulsion thrusters by their smaller
volume and mass and offer new possibilities for nanosatellite
orbit and attitude control [11, 12]. Miniaturized EP systems
are an active research field. Several surveys [13, 14] were
published showing a variety of technologies with thrust to
power ratios and Isp levels. Most of these systems provide
low thrust and therefore require long orbit control maneuvers.
However mission design is highly affected by long duration
orbit control maneuvers that create long-term attitude and
power constraints.

In this work new control algorithms for autonomous
nano-satellite formation flying using EP are developed. The
provided control algorithms can maintain a long term cluster
flight of multiple satellite using orbital element feedback.
In contrast to previous work [15, 11] that either ignored the
mission constraints or assumed that the satellite orientation
is dedicated to the orbit control maneuver, this paper will
focus on developing a controller that can work under realistic
attitude and mission constraints. The paper is organized as
follows: Sec. 2 describes the typical spacecraft constraints



on CubeSat mission; Sec. 3 present a robust controller that
utilizes low power EP system to reduce the along track drift;
Sec. 4 presents four different implementations of the men-
tioned controller under mission constraints; and finally Sec.
5 present results from a high fidelity numerical simulation
using these methods.

2. SPACECRAFT CONSTRAINTS

A spacecraft is composed of several important subsystems
(Fig. 1). Ideally we would like to operate these sub-systems
without any restriction and without any coupling between
them. This ideal assumption is not valid when designing
a real satellite mission. Each subsystem is affected by one
or more other subsystems and each subsystem adds more
constraints to the mission design. In our model spacecraft,
subsystems compete for two major resources : electric power
and satellite attitude. While a shortage in electric power
can be solved by adding solar panels (SP) or increasing bat-
tery energy capacity, the satellite attitude is restricted by the
kinematics of a constrained rigid body. We can divide these
constraints into short-term and long-term constraints. Short-
term constraints have minimal impact on other mission tasks
and therefore will be ignored in this paper. In contrast, long-
term constraints can be imposed for days or even months and
can interfere with other critical tasks.

Fig. 1. Schematic view of critical satellite subsystems

As a ”hard constraint” we define a constraint that cannot
be violated and a ”soft constraint” we define as a constraint
with some allowed error. In this section we will examine the
constraints in different aspects of the mission. Although con-
straints act on all types of spacecrafts, in this paper we will
focus on CubeSats [16, 17].

2.1. Spacecraft structure constraints

The CubeSat structure is a off the shelf component and there-
fore considered as a hard constraint. Based on the CubeSat
design specification [17] the basic unit, known as 1U, has a
volume of 1000 cm3 and a mass limit of 1.33 kg. We can
derive from the basic unit the physical limits for the bigger

models (Table 1). These physical limitations are taken into
account as hard constraints for the mission design. Limited
volume and mass will affect subsystem and overall perfor-
mance of the satellite.

An off the shelf structure also pose a challenges on sub-
system placement. One example is the problem of placing SP
and nadir pointing payload on a 6U CubeSat. If the β angle
(between the orbit plane and the sun vector) is low (β < 10°)
then placing the SP and payload on the opposite side of the
same axis is favorable. On the other hand, if β > 80° then
it is favorable to place the payload normal to the SP. Differ-
ent placement configurations can affect the performance of
the proposed methods. For example a sub-systems placement
can be described by using a body-fixed coordinate system B
as shown in Fig. 2. Here we assume that the CubeSat in this
paper have the following configuration: deployable solar pan-
els (DSP) are in zB direction, thrusters are in the xB direction
and the payload is pointing towards the −zB.

Table 1. Physical and power constraints

Model Mass
[Kg]

Volume[
cm3

] SP
power
[W]

Battery
capacity

[Wh]
1U 1.33 1000 10 19.24
3U 4 3000 26 38.5
6U 8 6000 40 77

Fig. 2. Structure and body frame directions

2.2. Attitude constraints

A requirement of pointing one of the satellite axis to a specific
direction allows only one rotational degree of freedom (DOF).
By fixing two of the satellite axes we fully determine the satel-
lite attitude. Therefor at any given moment, the satellite can
only achieve one hard constraint and one soft constraint. An-
other possible option is to fulfill two soft constraints in paral-
lel.



Tracking approximately inertially fixed vectors like the
sun vector is similar to tracking a non-moving target. Track-
ing a non-inertial vector, for example the nadir vector, is more
challenging task for an attitude determination and control sys-
tem (ADCS) and is similar to tracking a moving target. In this
case the ADCS has to constantly rotate the satellite axes to
keep tracking the target. One example is a case where x̂B is
pointing to the sun vector ŝ and ẑB point towards the ecliptic
normal. Because both vectors are approximately inertial the
satellite keeps a constant attitude. Considering a case where
ẑB is pointing to the nadir direction and x̂B point towards the
orbit normal, in near circular orbit, the expected angular rate
is equal to the mean motion n ,

√
µ
a3 and the satellite will

rotate around x̂B at the same rate. A fast angular velocity
change can also occur during transition between two differ-
ent orientations. With limited volume and power, ADCS on
CubeSats might not be a able to provide the required angular
rate. To avoid using unrealistic control effort, in this paper,
we will limit the angular rate to a maximum of 1 deg

s .

2.3. Electrical power constraints

Based on the work presented in [18] the two right columns of
Table 1 show the maximum solar generated power of 1U, 3U
and 6U CubeSats. Here we assume that the solar cells have
28.3 % efficiency and provide 1367 W

m2 (@100° C) at their be-
ginning of life. Each 1U panel can carry up to two cells there-
fore a 3U panel can carry up to 6 cells and a 6U panel can
carry up to 12 cells. Some of the more advanced DSP [19]
can generate even more power. Here we assume that the DSPs
are all on the same plane, pointed to the same direction with a
configuration of 4 deployable and 1 body mounted SP. During
eclipse the satellite still requires power to operate. The power
produced by the SP can be stored in batteries during the day
and used later during eclipse. Off the shelf batteries [20] for
1U, 3U and 6U CubeSats have the energy capacity of 19.24
Wh, 38.5 Wh and 77 Wh respectively. Typically the satel-
lite power is divided evenly between the critical subsystems:
housekeeping get 33 %, EP system get 33 % and the payload
get 33 %.

2.4. Orbital constraints

Atmospheric drag is a major perturbation in LEO, despite the
fact that CubeSats have a relatively small cross-sectional area.
In orbits lower then 500 km the drag force overcomes the
thrust magnitude of an EP thruster. To simplify the discus-
sion, in this paper we assume at least one order of magnitude
difference between the EP thrust and drag forces, and there-
fore limit the orbit height to be higher then 600 km.

Inter-satellite communication is crucial for mission suc-
cess because of the need to share information between the
cluster agents. Link budget analysis [21] show that inter-
satellite communication is affected by many parameters such

as: ISD, required data rate, transmission power and etc. Here
we assume an ISD upper bound of 1000 km.

3. VERY LOW THRUST ORBIT CONTROL

3.1. Control law

Control law design have great impact on the cluster perfor-
mance and different control approaches add different mission
constraints [22]. Due to the limited computational power and
limited communication capabilities we chose to focus on the
cyclic approach [23]. This approach have the following ben-
efits:

1. Limited information requirements - each agent interacts
only with his nearest neighbor.

2. Robust - failed spacecraft do not affect the stability of
the formation.

3. Scalable - the amount of agents can be increased with-
out modifying the control law.

4. Decentralized and distributed - all agents are equal with
respect to control, and there is no need of leader agents.

The controller goal is to limit the ISD drift by changing the
mean semimajor axis (SMA). The controller use mean orbital
elements as feedback. In this study orbital elements are orga-
nized in the following way:

E = [a, e, i,Ω, ω, f ]T (1)

Where a is the SMA, e is the eccentricity, h is the angular
momentum, µ is the gravitational constant, i denotes the incli-
nation, Ω denotes the right ascension of the ascending node,
ω is the argument of perigee, f is the true anomaly, λ is the
argument of latitude and p , a(1 − e2). The mean orbital
elements are obtained by the single averaging operator [24]:

ᾱ ,
1

2π

∫ 2π

0

αdM (2)

where α is the orbital element, ᾱ is the mean orbital element
and M is the mean anomaly. The controller is given by:

Ti =

{
0 ∆āij∆λ̄ij ≥ 0

−Tmaxsign (∆āij) ∆āij∆λ̄ij < 0

j =

{
i+ 1 i = 1, 2, 3...N − 1

1 i = N

(3)

Where T is a thrust command in the in-track direction, Tmax
is the maximum thrust, λ̄ = f̄ + ω̄, ∆āij , āi − āj and
∆λ̄ij , λ̄i − λ̄j . The proposed controller is simple to im-
plement on real time systems and can be done autonomously.
The amount of required information is limited to ∆ā and ∆λ̄
of the jth agent. The controller is using the neutral drift of the
satellite to reduce fuel consumption. It is decentralized and
can be adapted to a changing number of agent in the cluster.



3.2. Analytical model of the formation keeping maneuver

A CubeSat cluster is usually deployed from a single launcher,
and is injected into the same orbit plane. The major difference
between the CubeSats is their SMA. Lets consider a simple
scenario [25] where two satellites are injected into near cir-
cular LEO (e � 1) with some SMA difference. The satellite
will be subjected mainly to drag and J2 perturbations. We
consider an analytical model that predicts the along track dis-
tance evolving over a few days of the cluster establishment
maneuver. Although the model neglects J2 and drag pertur-
bations, it is useful for determining the required thrust in order
to maintain the ISD below maximal values for a short dura-
tion maneuver (less than 10 days) at specific initial condi-
tions. We assume that the chief can maneuver and the deputy
is cruising in a nominal orbit (C and D are chief and deputy
respectably). If ∆āCD∆λ̄CD < 0 at the initial time of de-
ployment when ∆āCD∆λ̄CD = 0 the couple will reach their
maximum along track distance. This will happened when the
chief and deputy SMA will be equal. To calculate the time
aC and aD converged we use the Gauss variational equations
(Appendix A.1) and replace the tangential acceleration with
the acceleration created by the thrusters:

ȧ =
da

dt
=

2a2v

µ

Tmax
m

(4)

Integrating Eq. (4) over a gives us ∆tai→af , the time from
orbit injection till the maximal distance reached

∆tai→af =
m
√
µ

2T

af∫
ai

1√
a3
da =

m
√
µ

T

[
1
√
ai
− 1
√
af

]
(5)

Under the assumption of e� 1

λ̇ = ḟ + ω̇ ≈ Ṁ + ω̇ = n (6)

The angular distance between the chief and the deputy at the
end of the maneuver

∆θ =

tf∫
ti

(
λ̇C − λ̇D

)
dt =

tf∫
ti

(√
µ

a3
C

−
√

µ

a3
D

)
dt (7)

The angular distance covered by the chief is given by

∆θC =

af∫
ai

(√
µ

a3
C

)
dt

da
da =

µm

4T

(
1

a2
i

− 1

a2
f

)
(8)

And the angular distance covered by the uncontrolled deputy

∆θD =

tf∫
ti

(√
µ

a3
D

)
dt =

√
µ

a3
D

∆tai→af (9)

We put Eq. (8) and Eq. (9) into Eq. (7) to obtain:

∆θaC=aD =
µm

4T

 1

a2
i

− 4√
aia3

f

+
3

a2
f

 (10)

Using the cosine law we obtain the along track distance:

dCD =
√

2af
√

1− cos (∆θaC=aD ) cos
∆θaC=aD

2
(11)

Table 2 shows the model result for different thrust values as-
suming two 6U CubeSats with mass of 8 kg, SMA of 7000
km and ∆aCD = 1 km.

Table 2. Inter - satellite distances example

T [µN ] ∆tai→af [day] dCD [km]
10 5 348
50 1 70
100 0.5 35

4. ALGORITHMS AND CONTROL METHODS

If one considers a non-constrained case where the satellite can
re-orientate its thrust to any required direction this case will
ensure an ideal performance of the above controller in terms
of fuel consumption, converges in time and maximal ISD.
However in a real power constrained mission, using thrusters
can cause the battery to reach high depth of discharge (DOD)
values. Also, it means that cluster keeping is the satellite first
priority mission. Satellites usually set their housekeeping ac-
tivities and payload activations as first and second priority.
This means that thrusters can not be pointed to the required di-
rection at all time and the cluster keeping performance might
be affected. Here we describe four different approaches to
cope with the mention conflicts. The first two methods are
based on a time division method and offer a way to trade DOD
values for maximal ISD and vice versa. The later two meth-
ods utilize the concept of allowed error cones and offer a way
to preform successful cluster keeping while doing other high
priority operation.

4.1. Fixed time slots method

One option to reduce the DOD values is to allow the satellite
to preform maneuvers only during the umbra. In LEO orbital
night are about 1

3 of the satellite period. To compensate for
the fact that electricity is not generated during the umbra we
are dedicating the satellite attitude to collect solar power dur-
ing the day. Table 3 shows the attitude requirement of this
method. By limiting the thrust maneuvers to the night time



we reduce 66 % of the available control time compared to un-
constricted case. Using the analytical model in section 3.2 we
can predict that the maximal ISD will increase by factor for
3, proportional to 1

Duty cycle .
We can split the satellite period to allocate several slots,

dedicating a slot for payload operation. Adding more slots
will reduce the amount of time spent on each slot and can
reduce the power generated, increase the maximal ISD and
increase the fuel consumption. Such a time division method
is easy to implement and promise to fulfill a hard constraint
on each of the required operation slots.

Table 3. Attitude requirements for the fixed time slots and
cosine methods

Night Day
xB = T

yB = T× s
zB = yB × xB

zB = s
yB = s× v
xB = yB × zB

4.2. Dynamic time slots method

We can consider a different time division approach where the
time slots are based on data collected in real time. Fig. 3
shows an activity diagram of this method. Upper and lower
bounds should be set in advance by the designer to meet the
lifetime requirement of the satellite. We can use the same con-
cept and add the nadir point mode. Fig. 4 shows an activity
diagram of the proposed method. In this example the nadir
pointing mode have a priority over the orbit control mode.
Like the above example, this method will ensure bounded
DOD values and the payload / EP will only be activated when
the DOD status is nominal.

Fig. 3. DOD method activity diagram

4.3. Cosine Method

SP maximum power is reached when the SPs axis ẑB is
aligned with the sun vector ŝ. The remaining DOF can be
used to bring the thrust vector x̂B as close as possible to the
velocity vector v̂. Using the thruster while the thrust vector
is not pointed into the right direction might cause problems,

Fig. 4. DOD method with nadir pointing payload activity di-
agram

such as excessive use of fuel and creating unwanted dif-
ferences in the orbital elements. The analysis presented in
appendix A.2 shows that even 20° misalignment will have
very small affect on the cluster keeping performance. Instead
of having a strict attitude constraint that allows us to fire only
when x̂B · v̂ = 1 we can now fire when x̂B · v̂ ≥ cos 20°
without creating too much unwanted effect in the orbital ele-
ments. Fig. 5 shows an activity diagram utilising this concept
and Table 3 shows the attitude requirement of this method.
During umbra the satellite preform precise thrust maneuvers
and during the day the satellite points towards the sun and
preform thrust maneuver only when x̂B · v̂ ≥ cos 20°. Using
this method we ensure maximal power generation while pre-
forming limited cluster control. We term it the cosine method
due to the allowed error cone around the velocity vector.

4.4. Double Cosine Method

The cosine method have one hard constraint and one soft con-
straint. If we can tolerate some error in our sun pointing ac-
curacy the sun pointing hard constraint can be modified to a
soft constraint. The satellite attitude affect on the power pro-
duction is modeled by

Psp = Psp0cosθs (12)

where Psp is the power produce by the SP, Psp0 is the SP
nominal power and θs is the sun incidence angle. This cosine
law holds only for sun angles between 0°−50°. For more ac-
curate results a Kelly cosine can be used [26]. Eq. (12) shows
that pointing the solar panels with 20° error will only reduce
the generated power by 6 %. The new soft constraint creates
an additional DOF. The new DOF can be used to maximize
the thrust time while keeping the DOD values low. We define
εp as the allowed error between ẑB and ŝ and εt as the allowed
error between x̂B and v̂.

These allowed errors create two cones hance this method
is termed here as the double cosine method. We can calculate
the separation angle between ŝ and v̂

cos (θ) = ŝ · v̂ (13)



Fig. 5. Cosine method activity diagram

We can use the ŝ and v̂ plane to create the NSW frame (Ns)
presented in Fig. 6(a) where

N = ŝ× v̂, W = (̂s× v̂)× ŝ, S = ŝ (14)

The projection of v̂I on the Ns frame is:

v̂Ns
= DINs

v̂I = [0, vy, vz] (15)

where DINs
is the direction cosine matrix (DCM) that rotates

vectors from I frame to the Ns frame. The projection of ẑB
on the Ns frame is:

ẑBNs
=
[

cosα cos δ sinα cos δ sin δ
]

(16)

where the right ascension, denoted by α ∈ [0, 2π) and the
declination, denoted by δ ∈

[
−π2 ,

π
2

)
. The projection of x̂B

on the Ns frame is:

x̂BNs
=
[

cosα sin δ sinα sin δ − cos δ
]

(17)

Now we can calculate ξ, the separation angle between x̂BNs

and v̂Ns

cos (ξ) = x̂BNs
· v̂Ns = (sinα sin δ) vy − (cos δ) vz (18)

Our goal in this method is to minimize |ξ| while

ẑBNs
· ŝNs ≥ cos εp (19a)

x̂BNs
· v̂Ns ≥ cos εt (19b)

Fig. 6(b) shows that this method is only effective when(π
2
− 2εpt

)
< θ <

(π
2

+ 2εpt

)
(20)

where εpt = min (εp, εt). We can find α and δ that minimize
|ξ| by deriving Eq. (18) and look for the maximum values.

df(α,δ)
dα = (cosα sin δ) vy

d2f(α,δ)
dα2 = (− sinα sin δ) vy

(21)

From Eq. (21) we see that if sin δvy > 0 then the maximum
can be found at α = π

2 and if sin δvy < 0 then the maximum

can be found at α = −π2 . Deriving Eq. (18) again this time
by δ

df(α,δ)
dδ = (sinα cos δ) vy + (sin δ) vz

δ = tan−1
(
− sinα

vy
vz

)
d2f(α,δ)
dδ2 = cos δ

(
sin2 αv2y
vz

+ vz

) (22)

From Eq. (22) we see that if vz < 0 then we obtain the maxi-

(a) NSW frame where N point to-
wards ŝ× v̂ and S point towards ŝ

(b) SW plane of the NSW frame in-
cluding the error cones around ŝ and
v̂ and the separation angle θ

Fig. 6. NSW frame

mum value when δ > 0 and if vz > 0 we obtain the maximum
when δ < 0. Now we should rotate the required direction for
zb from the Ns frame back to I using DNs

I and the required
attitude can be described by the following equation:

zb = DNs

I zbNs
, yb = zb × v, xb = yb × zb (23)

Fig. 7. Double cosine method activity diagram

5. RESULTS AND DISCUSSION

5.1. Numerical simulation setup

Several simulation were preformed to test the methods devel-
oped in section 4. The FreeFlyer software [27] was used as
a high fidelity orbit propagator that includes a drag model, a
solar radiation pressure model, earth zonal and tesseral po-
tential terms, the moon’s gravity field and the sun’s gravity



field. FreeFlyer was also used to implement the closed loop
controller and satellite logic using the built-in tools.

5.1.1. Electric power system modelling

We introduce to the orbital simulation a simplified electric
power system model that consider only a power source and
energy storage components. In this work we model the affect
of satellite attitude on the electric power system while assum-
ing a constant electrical efficiency of the system. Each of
the satellite sub-systems requires power and combining all of
them together gives us Pl. Integrating Psp and Pl over time
gives the generated energy Esp and the required energy El.
The relation between the energy produced by the SP Esp, the
energy consumed by the loads El, and the battery energy Eb
is given by:

Eb(t) = Eb(t− 1) + Esp − El (24)

Battery charge and discharge rates are measured as a frac-
tion of the rated energy Eb(0). The DOD affects the battery
performance (for example cell voltage, battery lifetime). The
DOD and the state of charge (SOC) are calculated by :

SOC =
Eb(t)

Eb(0)
= 1−DOD (25)

Calculating the sun incidence angle θs can be obtain by

θs = cos−1
(
n̂sp

B
· ŝB
)

(26)

where ŝB is the normalized sun vector in B and n̂sp
B

is the
normal to the solar panel surface in B. In general case, where
the satellite’s shape is unknown, this calculation might be
more complex due to the effect of surface shadow [28]. In
the case of CubeSats with DSP pointed to the same direction
the shadow effect vanish.

Fig. 8. electric power system simulation activity diagram

5.2. Case study

As a case study we assume a cluster of 3 6U CubeSats. The
6U physical and electrical power constraints are described in

Table 1. The CubeSat thruster create 100µN with Isp of 1000
s. Figure 2 shows the body frame of the above configuration.
Consider a local vertical local horizontal (LVLH) rotating co-
ordinate system in which ZL points along the radial direction,
YL along the orbit normal and XL completing the system.
In the chosen example the cluster orbit injection procedure
and initial conditions are defined in [29]. The satellites are
released one by one with constant time difference between
them. The release velocity ∆v created by the P-Pod is set
to be ∆v = 2 m

s . The first CubeSat launch towards the ZL.
The second CubeSat is released after ∆t = 35 s while the
launcher preforms 30° maneuver around the YL. The third
satellite is released 70 s after the first one while the launcher
preforms another 30° maneuver around YL. Launcher orbit
elements at the release of the first satellite are:

E0 = [7000, 0, 63°, 0°, 0°, 0°]T (27)

These initial conditions were used for all the simulation ses-
sions.

5.3. Non constrained performance

To create a reference to the other methods we test the ideal
performance of the controller. The non constrained case as-
sumes that the satellite can thrust in the required direction
whenever needed. We assume that the satellite attitude is
changing according to the algorithm presented in Table 4. We
can use the satellite orientation to calculate DOD values us-
ing the electric power system model simulation presented in
Section 5.1.1. For the non constrained case the maximal ISD
is 196 km (Fig. 9(a)), the controller coverage after 5 days and
fuel consumption is 1.26 g. Fig. 9(b) shows a full year simu-
lation of this case. The problem in this result is that after less
then a day DOD values reach 100 % meaning that in a real
scenario the satellite will not have enough power to operate.

Table 4. Non constrained case - attitude requirements

Thrust required No thrust reuired
xB = T

yB = T× s
zB = yB × xB

zB = s
yB = s× v
xB = yB × zB

5.4. Time division methods performance

The first time division method (Section 4.1) assumes that the
thruster can be activated only during the night while the satel-
lite charges its batteries during the day. For this case the max-
imal ISD is 591 km, the controller coverage after 14.8 days,
fuel consumption is 1.35 g and maximal DOD is 20 % (See
Fig. 10). Here we see an agreement with the analytical model
as the ISD increased by a factor of 3 compared to the non



(a) First 20 days (b) Full year simulation

Fig. 9. Non constrained performance - ISD result

constrained case. The maximal DOD value is lower relative
to the non constrained method.

Fig. 10. Time division and cosine methods - result summary

To improve the performance we can consider a second
time division method where the time slots are set based on
real time collected data. The second time division method
(Section 4.2) uses DOD measurements to decided if a thruster
can be activated. For this simulation the DOD upper bound
was set to 20 % and the lower bound is 10 %. For this case
the maximal ISD is 477 km, the controller coverage after 12.6
days, fuel consumption is 1.22 g and the maximal DOD is 30
%. In this method we are able to exchange higher DOD values
for lower ISD.

To estimate the control effort of the above methods we can
assume that the control effort is proportional to the required
angular rate. Fig. 11(a) shows the angular rate of a satellite
when its orientation is dedicated to sun-pointing. Fig. 11(b)
shows the case where the satellite point its thrusters to the ve-
locity direction. The peaks occur when the satellite enters or
leaves the area of sun exposure. The required attitude can be

found in Table 3. In both cases the required angular rate is
below 1 deg

s at all time. We note that moving from one point-
ing mode to another might take time considering the angular
separation between the current state and the required one.

(a) Sun pointing mode (b) Thrust mode

Fig. 11. Satellite angular rate in different pointing modes

5.5. Cosine methods performance

The cosine method assumes that the satellite points its SP to-
wards the sun during the day while minimizing the separa-
tion angle between x̂B and v̂ (Section 4.3). During the night
the satellite can activate its thrusters with no limitation. In
this simulation the allowed error is 20°. A numerical simu-
lation of this method show that the maximal ISD is 416 km,
the controller coverage after 10.7 days, fuel consumption is
1.58 g and maximal DOD is 20 % (Fig. 10). In Fig. 12 we
show the benefits of the double cosine method compared to
the cosine method. Data is shown only for the day section
of the orbit. Fig. 12(a) shows the separation angle between
ŝ and v̂ (solid line) and the area where this method can be
activated (bounded by the dashed lines). For these initial con-
ditions roughly 0.5 of the day time can be dedicated for thrust
maneuver. Fig. 12(b) shows the separation angle between
x̂B and v̂ where the diamonds represent the cosine method,
the circles represent the double cosine method and the solid
lines represent the allowed thrust zone. We see that using
this method we can increase the day thrust time by a factor
of 3 compared to the cosine method. Another benefit of us-
ing the double cosine method is that for a large section of
the thrusting time we can fire directly in v̂ direction. In this
example we have 6000 s period with 4000 s daytime then us-
ing the cosine method we can apply thrust on ∼ 45 % of the
period. With the double cosine method we can apply ∼ 65
%. Using the analytic model (Section 3.2) we can predict that
the cosine method ISD will be 2.2 time larger then the non
constrained method. Using the same model with the double
cosine method the ISD will increase by 1.54. The numerical
simulation of this method show that the maximal ISD is 312
km, the controller coverage after 8.2 days, fuel consumption
is 1.26 g and maximal DOD is 20 % (Fig 10). The ISD in-
creased by a factor of 2.1 and 1.59 for the cosine and double
cosine methods respectively compared to the non constrained
case. Fig. 13(a) shows the angular rate of the satellite when



(a) Separation between s and v

(b) Separation between xb and v

Fig. 12. Comparison between cosine and double cosine meth-
ods

executing the cosine method. The required attitude for the
cosine mode can be found in Table 3. The black dashed lines
mark the transient maneuver with 0.25 deg

s angular rate limit.
The duration of the transient maneuver can be lower if we in-
crease the angular rate limit. The peaks in the angular rate
of the sun pointing mode occurs when the satellite enters or
leaves the direct sun area. To the right of the dashed lines we
see the angular rate of the thrust mode. Fig. 13(b) shows the
angular rate of a satellite when executing the double cosine
method, in this case we present only the day time. The two
green peaks occur when ẑB jumps from the sun vector to the
edge of the cone. Between the two peaks an area of constant
angular rate is present where x̂B is pointed to v̂ and ẑB is
traveling through the cone. In both cases the required angular
rate is below 1 deg

s .

6. CONCLUSIONS

Analysis of CubeSats typical constraints indicates four major
constraints: structure, attitude, electric power and orbit. Fol-

(a) Cosine method (b) Double cosine method

Fig. 13. Satellite angular rate in cosine and double cosine
modes

lowing these constraints, a cyclic controller was developed
based on a low-power EP system. The controller modifies the
CubeSats SMA according to their relative position with re-
spect to the closest satellite in the formation. An EP system
offers a challenge to the CubeSat electric power and attitude
subsystems. To operate the EP system four method were de-
veloped. Two time division methods allocate dedicated time
slots for each of the satellite main tasks, fulfill one hard con-
straint at a time. Two cosine methods define an error cone
around the required orientation that allows the satellite to ful-
fill two soft constraints in parallel. A high fidelity orbit sim-
ulations was used to test these methods. A test case of 3 6U
CubeSats cluster deployed from a single launcher with 100
µN thruster was chosen. The simulation results show that all
methods were able to eliminate the drift with less than 2 g of
fuel within less then 20 days after the orbit injection. The low-
est ISD was achieved using the double cosine method. Dur-
ing the maneuver the satellites can maintain first priority tasks
while the orbit control operate as second priority. An analy-
sis was done to estimate the attitude system control effort by
monitoring the satellite angular rate, validating the feasibil-
ity of these methods with low power attitude actuators. An
electric power system simulation module were used to moni-
tor CubeSat power production, storage and consumption val-
idating the feasibility of these methods with real power con-
straints. To conclude, it was demonstrated that the proposed
methods presented here enable to maintain a realistic CubeSat
formation flying mission using low power EP.
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A. APPENDIX

A.1. Gauss variational equations

The general nonlinear dynamics of a satellite under perturba-
tions or control forces can be modeled using the Guass Varia-
tional Equations (GVEs). GVEs can be written in NTW frame
(NT ) based on [30].

da
dt

=

(
2a2v

µ

)
ut (28a)

de
dt

=

(
2 (e+ cos f)

v

)
ut −

( r
av

sin f
)
un (28b)

di
dt

=

(
r cosλ

h

)
uw (28c)

dω
dt

=

(
2 sin f

ev

)
ut +

(
2e+ r

a cos f

ev

)
un (28d)

−
(
r sinλ cos i

h sin i

)
uw

dΩ

dt
=

(
r sinλ

h sin i

)
uw (28e)

dM
dt

= n−

(
2
√

1− e2

ev

(
1 +

e2r

p

)
sin f

)
ut(28f)

−

(
r
√

1− e2 cos f

eav

)
un

The vector u = [ut, un, uw]
T represents acceleration written

inNT , where ut, uw and un are the velocity, orbit normal and
the along radial acceleration respectively.

A.2. Sensitivity analysis of cluster performance to thrust
errors

This section present and analysis that examined the affect of
20° misalignment from v̂ on each of the elements change rate,
compered to the ideal performance. The analysis was carried
out using the GVE equations Eq. (28) and under the assump-
tion that thrust is the only perturbation. From Eq. (28a) we
see that da

dt is affected only by the thrust component in the
velocity direction. In the worst case ut = Tmax cos 20° =
0.94Tmax so da

dt has change only by 6 %. This might slightly
increase the overall fuel consumption.

∆
da
dt

=

(
2a2v
µ

)
0.94Tmax(

2a2v
µ

)
Tmax

(29)

We can approximate Eq. (28b) under near circular orbit as-
sumption to be:

de
dt
≈
e�1

√
a

µ
(2ut − un) (30)

In the worst case these two components will combine so we
will get:

de
dt
≈ 2.22

√
a

µ

Tmax
m

(31)

Eq. (31) shows that the change from the ideal case is about
10%. We can approximate Eq. (28c) under near circular orbit
assumption to be:

di
dt
≈
e�1

0.34Tmax

√
a

µ
(32)

Lets replace the parameters with real numbers of LEO satel-
lite a = 7000 km with 100µN thruster and mass of 8 kg. With
these number the change in i over one day is about 0.0028°.
We can approximate Eq. (28e) under near circular orbit as-
sumption to be:

dΩ

dt
≈
e�1

0.34Tmax

√
a

µ
(33)

Replacing the parameters with similar parameters to the pre-
vious analysis will create a change in Ω that will accumulate
over one day to be about 0.0028°. Using the circular orbit ap-
proximate is a bit problematic when talking on Eq. (28g) and
Eq. (28e). These two equation have e in the denominator. We
can rewrite Eq. (28g) as

dM
dt

= n−Xut − Y un (34)



Calculate X
Y eliminate e in the denominator and if e is close

to zero then this ratio is 2. In the ideal case the dM
dt contri-

bution due to thrust is equal to X and in the misalignment
case this contribution is equal to X cos(20) + Y sin(20) =
X cos(20) + X

2 sin(20). So the maximal change between the
two cases is about 10%. If we set e = 0.01 then Eq. (28e)
can rewrite as:

dω
dt
≈ 2

0.01v
ut +

1

0.01v
un +

√
a

µ
uw (35)

Placing LEO parameters as before, the misalignment case
shows about 10% difference from the ideal case. This analy-
sis shows us that the performance difference between the ideal
case and the 20° case over a short time period is negligible.

A.3. Stability proof of the cyclic controller

The controller in Eq. (3) can be reduce to depend on a single
state ∆āij . The rate of change of the osculating λ is given by
Eq. (28):

λ̇ = ω̇ + Ṁ = n− Ω̇ cos i (36)

Under the assumption that the only perturbation is the thrust
force, the mean argument of latitude is:

˙̄λ = n̄ (37)

Hence,

∆ ˙̄λij = n̄i − n̄j =

√
µ

ā3
i

−
√

µ

ā3
j

(38)

Eq. (38) shows that if ∆āij → 0 then āi ≈ āj and so ∆ ˙̄λij →
0 and ∆λ̄ij → const showing that ∆āij is the controller’s
only state. To prove that the controller is an asymptotic stable
in the sense that

lim
t→∞

∆ā (t)→ 0 (39)

We use a Lyapunov function:

V =
1

2
∆a2

12 (40)

where V is continuously differentiable function. The closed-
loop system is stable if the following conditions are satisfied:

V (∆ā) > 0, ∀∆ā 6= 0 (41a)

V (∆ā = 0) = 0 (41b)

V̇ (∆ā) ≤ 0 (41c)

The system is asymptotically stable if:

V̇ (∆ā) < 0, ∀∆ā 6= 0 (41d)

The first two conditions Eq. (41a) and Eq. (41b) are auto-
matically satisfied by Eq. (40). The third condition Eq. (41c)

should be checked for the 4 cases of Eq. 3. The rate of change
of the mean SMA due to thrust is given by:

˙̄aT =

(
2ā2v

µ

)
T

m
=
e�1

(
2ā

3
2

√
µ

)
T

m
(42)

Thus,

V̇ = ∆ā12∆˙̄a12 = ∆ā12

(
2ā

3
2
1√
µ

T1

m
− 2ā

3
2
2√
µ

T2

m

)
(43)

For the two controlled cases (∆ā12∆λ̄12 < 0) we can replace
T with the expression from Eq. (3):

V̇ =
2Tmax√
µm

∆ā12

(
ā

3
2
2 sign (∆ā21)− ā

3
2
1 sign (∆ā12)

)
(44)

where Tmax, µ,m, ā1, ā2 are all positive. To keep V̇ contin-
uous we approximate the sign (∆ā) function by tanh

(
∆a
ε

)
where ε� 1.

V̇ =
2Tmax√
µm

∆ā12

(
ā

3
2
2 tanh

∆ā21

ε
− ā

3
2
1 tanh

∆ā12

ε

)
(45)

If ∆ā12 > 0 then ∆ā21 < 0. The first term 2Tmax√
µm ∆ā12 > 0

and the second term is negative so V̇ < 0. If ∆ā12 < 0 then
∆ā21 > 0. The first term 2Tmax√

µm ∆ā12 < 0 and the second

term is positive so V̇ < 0.
For the two uncontrolled cases (∆ā12∆λ̄12 > 0) we can

replace T with zero, hance V̇ = 0. This meets Eq. (41c)
condition but violate Eq. (41d) condition, meaning that the
controller is stable in the sense of Lyapunov but not asymp-
totic stable. LaSalle’s invariance principle [31] shows that if
we can establish that no trajectory stays identically at points
where V̇ (∆ā) = 0, except at the origin, then the origin is
asymptotically stable. In modes where ∆ā12∆λ̄12 > 0, ∆λ̄12

is always trying to change sign. When ∆λ̄12 change sign the
control is activated and V̇ < 0. We can use LaSalle’s in-
variance principle to show that controller Eq. (3) is in fact
asymptotic stable.


