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ABSTRACT 

 

A novel maneuvering target tracking algorithm is 

investigated. Drawing on the experience of combination 

idea of the modular structure and the fuzzy interacting 

multiple model algorithm (FIMM), a modular fuzzy 

interacting multiple model algorithm (MFIMM) is presented. 

The MFIMM algorithm consists of three independent 

modules working in parallel. The change of a target motion 

is also divided into three levels. The motion of a target is 

detected by a fuzzy control motion detector. Once the 

maneuver is detected, the MFIMM algorithm selects one of 

the three modules matching the actual movement of the 

target every moment. Afterwards, the MFIMM algorithm 

estimates the state of the target through interactive multiple 

model algorithm (IMM) based on square root unscented 

Kalman Filter (SRUKF) of the selected module. Therefore, 

the fuzzy motion detector deals with the level of motion and 

the modules switching, whereas the IMM-SRUKF accounts 

for the estimation of the dynamic system.  

 

Index Terms—maneuvering target tracking, MFIMM, 

IMM, SRUKF 

 

1. INTRODUCTION 

 

In many tracking systems, the target motion is modeled as a 

system whose varying state makes a transition according to 

an underlying model or several switching models. The 

selection of the proper model for applications of 

maneuvering target tracking is important and this problem 

has received much attention. 

Many specific dynamic models of target motion have 

been developed for target tracking. The simplest model is 

constant-velocity (CV) models, or more precisely, “nearly-

constant-velocity models”, which is a non-maneuver 

model[1]. The white-noise acceleration model assumes that 

the target acceleration is an independent process (strictly 

white noise)[2].The Singer acceleration model[3] assumes 

the acceleration to be a time-correlated stochastic process 

and lays the foundation for several other effective maneuver 

models, such as the mean-adaptive acceleration model[4] 

and the asymmetrically distributed normal acceleration 

model[5]. Another common model is Jerk model[1], Jerk is 

the derivative of acceleration, which is the target 

acceleration that is chosen to be the descriptor of a target 

maneuver and modeled as a random process.  

Each of the models described above performs well in 

specific scenarios, but there is no universally optimal model 

for all applications. The interacting multiple model (IMM) 

method[6] models the target motion as a hybrid system in 

which the state evolves according to a stochastic differential 

equation; the model jumps from one to another among a 

finite number of possible models according to a set of 

transition probabilities. The IMM algorithm constructed 

with many number of models provides good estimations 

when the models cover the types of motion well, but it 

reduces the effectiveness of the IMM due to the unnecessary 

competition between many non-matched models at any 

particular time[7]. Some modified IMM algorithms were 

presented for improving performance or computation 

efficiency in recent years. A variable structure MM (namely, 

VSMM) algorithm is proposed to solve the dilemma where 

the model set not only differs across targets but also varies 

with time forgiven targets[8][9]. The estimation with 

VSMM, however, depends on the auxiliary information 

(such as the terrain topography), which is hard to realize in 

some cases. 

To solve the above problems, this paper proposes a 

modular fuzzy interacting multiple model algorithm 

(MFIMM): (1) The algorithm consists of three independent 

modules working in parallel, called non-maneuver, weak 

maneuver and strong maneuver respectively. Due to the 

independence of each modular, unnecessary competition 

between many non-matched models is reduced; (2) Using a 

novel fuzzy-control method selects proper module for 

maneuvering target according to the target motion situation, 

which decreases the detection delay; (3) Applying 

interacting multiple model algorithm in selected module 

avoids the problem of tracking error. The simulation results 

show that the algorithm can track maneuvering target 

effectively and improve the computational efficiency; In 

addition, the tracking accuracy of the proposed algorithm is 

better than that of IMM algorithm. 

The paper is organized as follows. The problem is 

described in section 2. Section 3 provides modules structure. 

Section 4 presents fuzzy inference. Section 5 reviews the 

Interacting multiple model tracking algorithm. Section 6 



proposed the modular fuzzy interacting multiple model 

tracking algorithm. The simulation results are showed to 

demonstrate the efficiency of the proposed methods in 

section 7. Section 8 concludes the paper. 

 

2. PROBLEM DESCRIPTION 

 

The system equations are usually described as follows: 

   
1 ( )k k k kX f X w                            (1.a) 

                               ( )k k k kz h X v                            (1.b) 

In the equation, kf and kh denote the state transition 

matrix and the observation matrix, respectively. X is the 

target‟s state vector and kz is the measurement vector. kw

and kv are the system process noise and the measurement 

noise, respectively, assuming that their mean vectors are 

both zero and their variance matrixes are kQ and kR

respectively. 

 

3. MODULES STRUCTURE 

 

Different tracking model is suitable for different scenarios. 

There is such a situation that some models may work well 

during constant-velocity tracking while other models may 

perform well during maneuver tracking. Aiming at the 

above situation, the modules division is put forward in this 

paper, including non-maneuver module, weak maneuver 

module and strong maneuver module respectively. Three 

modules perform in parallel and each of them contains 

different tracking models. Independence between different 

modules can remove the excessive competition from the 

unnecessary models. 

 

3.1. Non-maneuver module 

 

The non-maneuver module describes constant-velocity 

motion or nearly-constant-velocity motion by using CV 

model, which is the simplest case. 

 

3.2. Weak maneuver module 

 

Weak maneuvering target motion can be described by 

Singer model and the current statistical (CS) model. Singer 

model has a wide coverage from constant-velocity to 

constant-acceleration (CA) motion; CS model uses the 

current acceleration mean value as the input control in the 

one-step-ahead prediction equation for the algorithm, which 

makes the equation be the same as that of the CA model 

with the variance adaptively changed. Compared with the 

Singer model, CS model can more truly reflect the change 

of scope and strength when target maneuvers. 

3.3. Strong maneuver module 

 

Strong maneuver module includes Jerk model and its 

modified model. Jerk model estimates target acceleration 

rate and more suitable for highly maneuvering target 

tracking. 

 

4. FUZZY INFERENCE 

 

The change of a target motion is divided into three levels: 

no, small, and big. If the motion module that a target was in 

had been known at time 1k  , it would be easy to select the 

module according to the level of motion changes at time k . 

Thus, the amount of calculation will be reduced and the 

tracking accuracy can be improved. Fuzzy theory uses 

relatively simple mathematical expressions to simulate the 

process of human thought and implements human control 

with computers, making complex systems deal with 

problems in accordance with people's way of thinking
[10]

. 

Therefore, we can use fuzzy theory to determine the motion 

mode of a target.  

 

4.1. Motion detection based on fuzzy theory 

 

Motion detection methods based on residual information are 

simple and easy to implement, therefore, they have been 

widely adopted. According to principles of the maneuvering 

target tracking, the actual motion mode of a target 

mismatches the non-maneuvering model when the target 

maneuvers. This will lead to increasing residuals, and 

tracking errors will increase accordingly. Taking into 

account the effect of random noises, the smoothing 

processing is carried out on the residual: 

'
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1
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e k e i e i
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                     (2) 

Where ( )e k  is the residual at the moment k , and L  is 

the smoothing length. 

For a target, before the maneuvering occurs, the 

smoothed residual usually fluctuates around a fixed value 

randomly. It is a stable random process. However, when the 

target carries out maneuvering, the smoothed residual will 

no longer fluctuate steadily. It will increase all the way. In 

practical situations, when the residual is not large, but the 

residual variation between a moment and the next moment 

is large, the motion is also likely to change. The variation of 

the residual is as follows: 

( ) ( ) ( 1)e k e k e k                           (3) 

First of all, carry out fuzzification on the input. The 

smoothed residual and its variation are used as the inputs of 

the fuzzy detector. After that, ( ) ( )e k e k、  are fuzzified. 



The fuzzy set of ( )e k  is  , ,PS PM PB . The fuzzy set of 

( )e k  is  , ,NB ZO PB . Here, a trapezoid function is 

used as the membership function. 

Next, design fuzzy rules. The Takagi-Sugeno fuzzy 

inference method does not require time-consuming and 

defuzzification operations which are difficult to analyze 

mathematically
[11]

. It also facilitates the establishment of 

fuzzy models of dynamic systems, meeting the requirements 

of real-time target tracking. Therefore, we use the Takagi-

Sugeno method to build the inference rules which have two 

inputs and one output. 

( ) , ( ) ,IF e k A e k B THEN P C        
 

Where A and B  are fuzzy sets of ( ) ( )e k e k 、  

respectively. C is the degree of occurrence of the motion 

changes, which is expressed as a percentage. 

According to experts knowledge, no motion change will 

occur if C  is in [0,0.35) . Small motion changes, 

including transitions between the non-maneuver and weak 

maneuver modules and transitions between the weak 

maneuver and strong maneuver modules, will occur if C  is 

in [0.35,0.75) . Big motion changes, including transitions 

between the non-maneuver and strong maneuver modules, 

will occur if C  is in[0.75,1] . The fuzzy rules are designed 

as follows: 

( ) , ( ) , 0 ;

( ) , ( ) , 0.15 ;

( ) , ( ) , 0.35 ;

( ) , ( ) , 0.15 ;

( ) , ( ) , 0.55 ;

( )

IF e k PS e k NB THEN P

IF e k PS e k ZO THEN P

IF e k PS e k PB THEN P

IF e k PM e k NB THEN P

IF e k PM e k ZO THEN P

IF e k P

         

         

         

         

        

  , ( ) , 0.75 ;

( ) , ( ) , 0.65 ;

( ) , ( ) , 0.85 ;

( ) , ( ) , 1;

M e k PB THEN P

IF e k PB e k NB THEN P

IF e k PB e k ZO THEN P

IF e k PB e k PB THEN P

       

         

         

         

 

The corresponding control table of fuzzy rules is 

showed as follows: 

Table 1 

( )P k
 

( )e k
 

NB ZO PB 

 

( )e k
 

PS 0 0.15 0.35 

PM 0.15 0.55 0.75 

PB 0.65 0.85 1 

 

4.2. State compensation 

 

The motion status detection method described in the last 

section uses the smoothed residuals as the inputs of the 

detector, introducing the lag effect inevitably. The tracking 

performance will be affected if the status is not corrected. 

Assume that the target is in a uniform motion at the 

initial moment. We use a CV model to do the tracking 

filtering. The maneuvering of the target occurs at the k d
moment, while the detector detects the maneuvering at the 

moment k  and changes the tracking module immediately. 

The filter uses the value at the 1k  moment as its initial 

value. However, between the k d moment and 1k 
moment, we use the CV model to track the target after 

maneuvering. The model mismatches the actual movement, 

leading to increased errors. As a result, the initial unscented 

Kalman filter value at the moment k should be the state 

value 1

c

kX    at the moment 1k  after correction. 

Assume that the value at the k n moment is the 

optimal estimation. It is required that the k n moment 

occurs before the k d moment. Between the k n

moment and 1k  moment, the corrected module is used to 

do the state estimation. In this way, the value at the 1k 

moment will be the state value 1

c

kX   after correction. The 

value at the k n moment is assumed to be the optimal 

estimation. Therefore, the k n moment may occur after 

the maneuvering if n is too small, and the amount of 

calculation will increase if n is too large. Generally, n

should be larger than the smoothing length L . 

Taking real-time performance and accuracy of the 

algorithm into account, the state compensation is only 

performed during transitions between the non-maneuver and 

strong-maneuver modules. 

 

5. INTERACTING MULTIPLE MODEL TRACKIHNG 

ALGORITHM 

 

The IMM estimator is a suboptimal hybrid filter that has 

been shown to be a useful hybrid state estimation schemes. 

The model of hybrid systems and IMM algorithms, initially 

proposed by Bloom, serves as a basis for the synthesis of 

more efficient filters for tracking maneuvering targets. Each 

cycle of IMM estimator consists of three major steps: 

interaction (mixing), filtering, and combination. The 

algorithm requires multiple filters, each corresponding to the 

target‟s acceleration state.  

The IMM is applied based on square-root unscented 

Kalman filter (SRUKF) in the modular calculation. The 

model set selection will be illustrated in part 6. 

 

 



6. THE MODULAR FUZZY INTERACTING 

MULTIPLE MODEL TRACKING ALGORITHM 

 

Combining modular structure, fuzzy theory and interacting 

multiple model algorithm, a modular fuzzy interacting 

multiple model (MFIMM) algorithm is presented in target 

tracking. The MFIMM algorithm includes five fundamental 

steps: 

Step1. The target motion detection 

Using the module at time 1k  as the initial filter 

module calculates the probability C and motion state ( )S k . 

If ( ) 0S k  , motion at time k has no change, as same as 

motion at time 1k  ; If ( ) 1S k  , motion at time k has a 

small change; If ( ) 2S k  , motion at time k has a big 

change. 

Step2. Select one module from module structure 

If  ( ) 0S k  , the result of Step1 is the state estimation 

at time k . Go to step5. 

If ( ) 1S k  , a. the module at time 1k  is non-

maneuver module, then the module at time k changes to 

weak maneuver module; b. the module at time 1k  is weak 

maneuver module, then the module at time k changes to 

strong maneuver module; c. the module at time 1k  is 

strong maneuver module, then the module at time k changes 

to weak maneuver module. Go to step4. 

If ( ) 2S k  , a. the module at time 1k  is non-

maneuver module, then the module at time k changes to 

strong maneuver module; b. the module at time 1k  is 

strong maneuver module, then the module at time k changes 

to non-maneuver module. 

Step 3: state compensation 

Filtering module adopts the result of step2, and using 

the method of section 4.2 updates the state estimation 

1

c

kX  of time 1k  as the input at time k . 

Step4: Estimation using IMM 

With the initial value, estimation uses IMM algorithm 

based on SR- UKF. 

Step5: Time 1k  go to step 1. 

 

7. SIMULATION 

 

The given algorithm is illustrated with one example of 

maneuvering target tracking. To simply the aerodynamic 

equation, Earth is assumed to be a non-rotating sphere and 

the trajectory is a target moving in the plane. Dynamic 

model with no lateral movement of a target is shown as 

follow: 

2
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3
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x x x y y x

y x x y y
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v
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                   

   (4) 

In the equation,  is air density under the standard 

atmosphere model;V is the velocity; S is reference area of 

the target; m is the quality of spacecraft; xC , yC are drag 

coefficient and lift coefficient, respectively; 0g is gravity 

acceleration; 0R is radius of the earth; oxR , oyR are 

coordinates of spacecraft in relative coordinate system; 0R

is geocentric distance. 

S , m , xC and yC are parameters published by 

Qualcomm
[16]

; longitude, latitude, altitude and course 

heading of launch point are 0 ,0 ,0 ,90m  
; longitude, 

latitude, altitude of targets are 0 ,0 ,66km 
; initial Mach 

number is 10; inclination angle is 1 ; declination angle is

0
; control quantum is impact angle, which is the constant 

15
.The trajectory is got through 4-order Runge-Kutta and 

is shown as follows: 

 

 
Figure 1 the trajectory of target 

 

The proposed algorithm includes three modules: non-

maneuver module with CV model, weak maneuver module 

with Singer model and CS model, strong maneuver module 

with Jerk model. The sampling periodT is 1 s, the standard 

covariance of models‟ process noise is 2 /m s  , the 

standard deviation of measurement noise is

50 /x y m s   , and the matrix of the probabilities is 
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The RMSEs of IMM and MFIMM are demonstrated in 

Figure 2. During the first 750s, MFIMM algorithm has 

better performance than IMM, especially when the target 

maneuvering. With the same initial conditions, the 

simulation time of MFIMM is about a half that of IMM. But 

in the last period of time, the tracking accuracy of MFIMM 

is not very good, especially at the direction of y . That is 

because the position changes so fast that exceeds the 

thresholds of ( )e k and ( )e k , which improve the level of  

motion and then lead to modules switch abnormally. If the 

more accurate thresholds were found, the MFIMM 

algorithm could be more widely used. In addition, the 

proposed algorithm is a viable algorithm to other tracking 

methods. 

 

 
Figure 2 position RMSEs for IMM and MFIMM 

 

8. CONCLUSION 

 

The MFIMM algorithm contains independent modules, 

which are IMM filters performing in parallel. Then the 

modules are selected according to a fuzzy control method. 

The presented algorithm inherits the merit of the IMM 

methods. The MFIMM algorithm improves performance of 

maneuvering target tracking by avoiding the excessive 

competition from the unnecessary models. And then it 

reduces computation burden effectively. For the future study, 

we are focusing on finding a more accurate boundary of the 

thresholds of ( )e k and ( )e k  in the specific problems. 
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