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ABSTRACT 

 

This paper was narrowed down to significant contributions in 

the area of Kalman filtering applications for orbit 

determination. Research work from 1967 to 2013 is included 

in this paper. It was observed that examples from 1967 

demonstrate the importance of pre-flight parametric studies 
when orbit determination estimations are carried out in short 

periods. Development of the extended Kalman filter requires 

some proper selection of parameters that define the 

probability density of the initial state vector, and any other 

parameters required by modifications to the extended Kalman 

filter algorithm. This paper can be used as a foundation for 

further investigations in the area of orbit prediction. 

 

 

1. INTRODUCTION 

 

This paper discusses the application of the Kalman filter 
towards precise real-time orbit prediction. Research shows 

that extended Kalman filters can be made to work in real-data 

situations, contrary to what some professionals in the 

aerospace industry believe. A popular technique for orbit 

determination is the Kalman filter. The study of the dynamics 

of bodies in interplanetary or interstellar space is in general 

referred to as astrodynamics. Within this discipline there are 

two major divisions. The first is the movement of the body's 

center of mass, referred to as kinematics (also celestial 

mechanics or orbit dynamics). The second is the movement 

of the body around its center of mass, referred to as attitude 
dynamics. 

 

The Kalman filter is a data processing algorithm used 

due to its excellent recursive properties, and small 

computational requirements. It can be applied to linear 

systems exhibiting Gaussian error statistics. Some important 

omissions are the continuous-time algorithms [1] [2]. Also 

the Chandrasekhar type algorithms reported by Morf and 

Kailath and Lindquist [3] [4]. The main reason for omitting 

these continuous-time algorithms is that such algorithms are 

heavily dependent upon integration methods for their 

accuracy and numerical stability. It was assumed best not to 
try and compare the continuous and discrete algorithms in 

terms of numerical accuracy. The Chandrasekar-type 

algorithms were omitted because they are not directly 

applicable to time-varying problems and, thus, do not seem 

to be computationally competitive with our other algorithms 

for this class of problems. 

 

The algorithms selected for study include the 

Conventional Kalman Filter, Joseph stabalized Kalman filter 
[5] [6]. Conventional Kalman Filter with lower bounding and 

the Potter-Schmidt square root filter [6]. Finally the Bierman-

Thornton factorization filter is also discussed [7] [8]. Part of 

the 1977 Mariner Jupiter-Saturn (MJS) mission model shown 

in Equation 1 was used to analyze aforementioned filtering 

techniques. 

 
 𝑿𝑖+1 = 𝜱𝑖𝑿𝑖 + 𝑩𝑖𝝎𝑖 (1) 

 

Equation 1 is a dynamic model. An observation can be found 

using Equation 2. 

 

 𝑿𝑖+1 = 𝜱𝑖𝑿𝑖 + 𝑩𝑖𝝎𝑖 (2) 

Where, 

 

 𝑿𝑖 = 𝑿(𝑡𝑖)  ∈ 𝑹𝒏  

 𝒛𝑖 = 𝒛(𝑡𝑖) ∈ 𝑹𝒎  

 𝜱𝑖 = 𝜱(𝑡𝑖+1, 𝑡𝑖)  

 𝑨𝑖 = 𝑨(𝑡𝑖)  

 

Disturbances {𝝎𝑗} and {ʋ𝑖} are independent Gaussian 

random sequences with zero means 𝑸𝑖 and covariances 𝑹𝑖 

respectively. The measurement and time updates are 

computed as shown in Equations 3 and 4 respectively. The 

measurement and time updates are computed as shown in 

Equations 3 and 4 respectively.  

 

 �̂�𝑖 = �̃�𝑖 + 𝑲𝑖(𝒛𝑖  − 𝑨𝑖�̃�𝑖) (3) 

 �̃�𝑖 = 𝜱𝑖�̂�𝑖 (4) 

 

Where �̃�𝑖 = 𝑿(𝑡𝑖|𝑡𝑖−1) is the one-stage predicted estimate of 

�̃�𝑖 and �̂�𝑖 = 𝑿(𝑡𝑖|𝑡𝑖−1) is the filter estimate. The algorithms 

differ principally in the way in which they compute the 

Kalman gains {𝑲𝑖} and these methods depend on either 

estimate error covariance or covariance factor recursions. 
 



 

2. CONVENTIONAL KALMAN FILTER 

 

The gain, measurement update and time update respectively 

for the conventional Kalman filter are given in Equations 5, 

6, and 7 respectively. 

 

 𝑲𝑖 = 𝑷𝑖𝑨𝑖
𝑻(𝑨𝑖𝑷𝑖𝑨𝑖

𝑻 +  𝒓𝑖)
−𝟏 (5) 

 

 �̂�𝑖 = 𝑷𝑖 − 𝑲𝑖(𝑷𝑖𝑨𝑖
𝑻)𝑻 (6) 

 𝑷𝑖+1 = 𝜱𝑖�̂�𝑖𝜱𝑖
𝑻 − 𝑩𝑖𝑸𝑖𝑩𝑖

𝑻 (7) 

 

Where 𝑷𝑖 and �̂�𝑖 are the one step predicted and filter estimate 

error covariance matrices 𝑷𝑖 = 𝑬 [(𝑿𝑖 − �̃�𝑖)(𝑿𝑖 − �̃�𝑖)
𝑇

] 

and �̂�𝑖 = 𝑬 [(𝑿𝑖 − �̂�𝑖)(𝑿𝑖 − �̂�𝑖)
𝑇

]. All of the terms in 

Equations 5 through 7 are time dependent, as indicated by the 

subscripts. Although time dependence can be suppressed to 

simplify notation. The measurement error covariance in 

Equation 5 is represented by a scalar r. Vector outer products 

are used where the algorithm can be so arranged, and 

symmetry of the covariance matrix is preserved by computing 

only the upper triangular non-redundant entries. An exception 

to this principle of non-redundant computation is the 
formulation of Joseph’s stabilized algorithm. 

 

 

3. MEASUREMENT UPDATE IN JOSEPH’S 

STABILIZED FILTER 

 

Symmetry is exploited in Equation 8 because K is computed 

using Equation 5. The matrix �̂� can be obtained from 
Equation 9 by arranging the computations as indicated by the 

parentheses, using vector outer products and computing only 

the upper triangular elements. 

 

 �̅� = 𝑷 − 𝑲(𝑷𝑨𝑻)𝑻 (8) 

 �̂� = �̅� − (�̅�𝑨𝑻)𝑲𝑻 +  (𝑲𝒓)𝑲𝑻 (9) 

 

Significantly more accurate results can be obtained, when all 

n2 elements of the first term of Equation 9 are computed and 

the off-diagonal elements were averaged. It should be noted 

that factorizing 𝑲𝑻 in Equation 9 tends to create numeric 
instability. The fact that numerical results are sensitive to 

such details is indicative of the algorithms numerical 

instability. 

 

 

4. CONVENTIONAL KALMAN FILTER WITH 

LOWER BOUNDING 

 

In Equation 10 and 11 𝑀(𝑗, 𝑗) = 𝜌𝑚𝑖𝑛
2  �̂�(𝑖, 𝑖) �̂�(𝑗, 𝑗) 𝑎𝑛𝑑 𝑖 =

1, 2, … 𝑗 − 1. Then n components of 𝜎𝑚𝑖𝑛  and the correlations 

𝜌𝑚𝑖𝑛  are chosen by deduction. 

 

 �̂�(𝑗, 𝑗) = 𝑚𝑎𝑥[�̅�(𝑗, 𝑗), 𝜎𝑚𝑖𝑛
2 (𝑗)]   𝑗 = 1, 2, … 𝑛 (10) 

 �̂�(𝑖, 𝑗) = {
�̅�(𝑖, 𝑗) 𝑖𝑓 �̅�2 (𝑖, 𝑗) < 𝑀(𝑖, 𝑗)

𝑆𝐺𝑁(�̅�(𝑖, 𝑗))  √𝑀(𝑖, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 

 

This formulation is typical of the techniques that are used to 

prevent the computed covariance from having diagonals 

(variances) that are too small, or negative, and correlations 

that are too large [9]. Such formulations are, to be sure, not 

optimal and the computed �̂� is generally not the actual 
estimate error covariance. Research shows that choosing the 

bounds 𝜎𝑚𝑖𝑛 and 𝜌𝑚𝑖𝑛  is difficult; their appropriate values are 

obtained from lengthy simulation studies. 

 

 

5. POTTER-SCHMIDT SQUARE-ROOT FILTER 
 

Here the error covariance matrix is factored as P = SST with 

S square. Measurement updating is accomplished by 

triangularizing the augmented array [ΦS BQ1/2] by applying 

an orthogonal transformation from the right. Algorithms 

details can be found in references [5] and [6].  

 

Formulas for factorization updating are not as compactly 

represented as are their covariance counterparts. Detailed 

comparisons in references have shown that factorization 

algorithms require no more computers storage, are no harder 

to automate and are competitive computationally with their 

covariance counterparts [7] [8] [10]. In fact for problems 

involving moderate numbers of process noise parameters, the 

U-D factorization filter can be actually more efficient than 

even the conventional Kalman filter algorithm. 

 

 

6. BIERMAN-THORNTON U-D FACTORIZATION 

FILTER 

 

The error covariance matrix is uniquely factored as P = 

UDUT, with U unit upper triangular and D diagonal. 

Measurement and time updating algorithms for the U and D 

factors are derived in references [7] [8]. 

 



 

7. SIMULATION RESULTS OF ORBIT 

DETERMINATION CASE STUDY OF THE MJS 

MISSION 

 

In the case study done by Bierman and Thornton, of the five 

algorithms analyzed the most difficulty occurred with the 

Kalman stabilized formulation [9]. This is surprising result 

because the equations appear simple. The researchers stated 

that there were no programming errors, only that the single 

precision results were sensitive to the statistics and to the 

grouping of terms in the computer code [9]. By contrast the 
single precision factorization results were always consistent. 

These findings and other results of interest were related by 

describing results for the basic 19 state filtering problem 

found in [9]. 

The statistics given in Table 1 are typical assumptions 

for the 19 state filtering problem. In orbit determination it is 

common practice to begin filtering with larger uncertainties 

in position and velocity. However, to avoid the initialization 

numerical instability associated with the Kalman algorithms 

were chosen to use relatively small variances. 

Table 1. Summary of statistics used to generate sample data 

for MJS mission [9]. 

Variable Standard Deviation 

Position 1000 km 

Velocity 100 m/s 

Acceleration 10-11 km/sec2 

Station Spin axis – 1 meter 

Location Errors 
Longitude – 2 meter 

Latitude – 5 meter 

GM for Saturn 0.1% 

Range 3 meters 

Doppler 1 mm/sec (for 1 min. count time) 

 

For this case and others to follow the double precision 

filters agree to at least 8 digits (and generally to 10 or more).  

The single precision programs, however, produce a 

variety of results. Actual filter performance (accuracies 

obtained from the error analysis program which evaluates 

computed gain profiles from the various filter algorithms) for 

this case is illustrated in Figure 1 which compares actual 

uncertainties for each of the algorithms. 

 

In Figure 1 the position and velocity uncertainties of the 

factored single precision algorithms are shown to agree with 
the double precision references. It is important to note that 

this consistency was observed in all of the cases studied; i.e. 

the single precision factorization results always agreed well 

with the double precision reference cases [9]. 

 

The single precision Kalman algorithms on the other 
hand, exhibit no such numerical stability. Obvious numeric 

deterioration in the form of negative computed variances, 

appear at inexplicable times. Negative variances first appear 

in the conventional Kalman mechanism after four days of 

filtering and after the days when the stabilized formulation is 

used. Several other surprising phenomena from Bierman-

Thornton study are mentioned below: 

 

(a) Both the conventional and stabilized algorithms compute 

intermittent negative variances. From a total of 607 

Figure 1 (a). Comparison of Actual Position Uncertainties 

[5]. 

Figure 1 (b). Comparison of Actual Velocity Uncertainties 

[5]. 



measurement updates the conventional algorithm 
computes negative variances 177 times and the stabilized 

algorithm produced negative variances 69 time. 

 

(b) Bias parameter variances are also intermittently 

negative. This violates the theoretic monotonicity of 

constant parameter variances. 

 

(c) The numerical instability discussed here is related to the 

choice of statistics. However, even in the case of the 

conventional algorithm it takes more than 48 time and 80 

measurement updates before negative computed 
variances appear. 

 

(d) The appearance of negative diagonal elements in the 

computed covariance is not necessarily related to filter 

variances which are tending toward zero. 

 

 

8. ERRORS ASSOCIATED WTH KALMAN FILTERS 

IN ORBIT DETERMINATION 

 

The nonstationary linear discrete estimation problem has 

been numerically tested with various Kalman filter 

algorithms. In the previous orbit determination case study the 
errors generally have the following properties:  

 

(a) The errors emphasize the importance of numerics in 

determining system performance. This is important to 

show that numeric effects are important both in obtaining 

accurate results and computing estimates.  

 

(b) Errors show that computer numeric effects mentioned in 

previous point can cause erroneous predictions based on 

linear estimation theory. This point is necessary for 

describing the numerical effects in obtaining 

computational accuracy. 

 
(c) Errors also show that both the conventional and 

stabilized Kalman are numerically unreliable. 

 

(d) Errors demonstrate that the Bierman-Thornton U-D 

factorization filter is computationally efficient and 

numerically stable. 

 

 

9. RECENT RESEARCH 

 

More recent research focuses on the Extended Kalman Filter 

(EKF) based implementation approach to derive an orbit 
determination solution. Objectives include: using angles-only 

measurements to reconstruct the satellite orbit, use a 

combination of angles and range measurements for orbit 
reconstruction, and evaluate the orbit determination solution 

accuracy subject to various levels of fidelity for both 

environmental variations and sensor locations [11].  

 

In the first objective using angles-only techniques for 

orbit determination means that no range measurements are 

used. From a general target tracking application perspective, 

angles-only filtering has been the subject of many on-going 

research efforts due to the difficulty in the processing 

solutions. Current research also focuses on nonlinear effects 

and uncertainty of the derivative terms of the linearized 
measurement matrix which may become ill-conditioned due 

to poor geometry of the target to sensor measurements [11]. 

 

There is no single solution available that clearly 

outperforms all other strategies. A series of nonlinear 

estimators have been proposed over time which for the most 

part is nonlinear extensions of the Kalman Filter [12]. Those 

nonlinear filtering techniques include the Extended Kalman 

Filter [13]; Unscented Kalman Filter [14] and its variants like 

Divided Difference based approach [15] (i.e., DD1 and 

DD2); State Dependent Riccati Equation/-D Based Filter 
[16] and others.  

 
The subject of orbit determination using angles-only 

measurements is revisited in light of Extended Kalman Filter 

processing and measurement quality including the relative 

geometry between the target and sensor platforms. The 

observability requirement defined as the information 

captured by sensors was briefly analyzed in [11]. The 

processing of the Extended Kalman Filter against simulated 

data, and Orbit Determination Tool Kit processing of actual 

tracking data both show successful results. As expected, 

range measurements significantly improve the orbit 

determination solution accuracy over the angles-only filter 

solution case. A case using the real tracking data was 
constructed and run to simulate decreased observability. The 

results showed a large increase in the smoother position 

uncertainty. 

 

In nonlinear estimation problems, various filtering 

algorithms have been developed and applied. There are two 

methods for nonlinear estimation: sequential estimation and 

batch estimation. The sequential estimation method predicts 

and corrects the state vector to produce a better estimation 

result recursively at each epoch. On the other side, the batch 

estimation method collects all measurements for a specified 
period and processes them together to obtain the best 

estimation result non-recursively at each period. The 

sequential estimation is commonly used for on-line 

applications such as on-board spacecraft navigation and real-

time orbit determination for satellites because it has 

advantages in terms of the processing time. However, for off-



line applications such as precise orbit determination for 
satellites, the batch estimation method is generally used 

because it has the advantage of accurate estimation results. 

The EKF method and the batch least-squares filter (BLSF) 

method are the most popular methods of sequential and batch 

estimation, respectively. EKF and BLSF have been 

successfully applied to nonlinear estimation problems in 

simple linearization and approximation nonlinear models.  

 

Linearization in EKF and BLSF starts with the 

assumption that the reference value is very close to the true 

value, but this linearization assumption may give unstable 
solutions when the problem has an inaccurate initial reference 

condition or sparse or insufficient measurements. To 

overcome these problems, several estimation algorithms have 

been developed, such as the unscented Kalman filter (UKF), 

[17], particle filters (PF) [18] exact nonlinear recursive filters 

[19] iterative or smoothing filters based on UKF, a batch filter 

based on unscented transformation (UT) [20] and others.  

 

Since UT does not include any linearization concept, for 

on-line applications the UKF has been applied and has shown 

better performance for satellite attitude estimation and orbit 

determination or for trajectory determination of ballistic 
missiles [21]. For off-line applications, a batch filter based on 

UT has been applied and has shown better performance for 

satellite attitude determination [22] and orbit determination. 

However, initial covariance and the scaling parameter 

adjustments in the batch filter based on UT sensitively affect 

the precision and performance of filtering in some nonlinear 

problems [23]. The scaling parameters change the 

distribution of the sigma point in UT. The physical meaning 

of the scaling parameters is a value that can control the 

distribution and range limit of the sigma points. Generally, 

the major factor that determines the formation of sigma points 
is the scale parameter α [24]. In orbit determination problems, 

the scaling parameter α of a batch filter based on UT affects 

the estimation performance [23].  

 

The effects of the scaling parameter α of a batch filter 

based on UT on satellite attitude determination problems 

have also been analyzed.6 In that line of research, they 

showed that adjusting the scaling parameter can improve the 

estimation performance but that an additional tuning process 

is required to set an acceptable range of the scaling 

parameters. This may be why batch filters based on UT are 

not commonly used for effective nonlinear batch estimations. 
 

To overcome the scaling parameter problem, the PF 

concept is utilized for a one-dimensional simple batch 

estimation problem, and the performance of a batch filter 

based on PF is found to be better than that with a batch filter 

based on UT [25]. The PF method is a completely nonlinear 

and non-Gaussian estimation process based on sequential 

Monte Carlo sampling. It has been widely applied to various 
real-time estimation problems [19]. PF uses a complete 

probability density function for measurements and complete 

nonlinear system dynamics. Furthermore, mathematical 

modeling is not complicated because the PF method uses 

system dynamic and measurement noise models in a 

straightforward manner. Because EKF and UKF use mean 

and covariance values, which are based on Gaussian 

assumptions, they cannot give best estimation results when 

state distribution or measurement noise has non-Gaussian 

characteristics. In the case of a batch filter based on PF, we 

can obtain robustness against high nonlinearities due to its 
use of completely nonlinear dynamics and a non-Gaussian 

probability density function. Additionally, a batch filter based 

on PF does not require a heavy tuning process like batch filter 

based on UT, allowing it to give more robust batch estimation 

results that can be conveniently obtained. 

 

 

10. CONCLUSION 

 

A brief literature review on the use of the Kalman filter and 

its derivatives has been provided. Research done in the past 

has shown that the conventional and stabilized Kalman filters 
are numerically unreliable. More recent research involved 

nonlinear conditions in which batch filters based on Particle 

Filters and Unscented Transformation performance levels are 

similar and better than that of Batch Least-Squares Filter. 

Precise orbit determination using a batch filter based on 

Particle Filters is more suitable than Batch Least-Squares 

Filter and a batch filter based on Unscented Transformation 

for precise orbit determination problems that arise under 

nonlinear and non-Gaussian conditions. Further research 

currently being done will shed light on tracking and detection 

of multiple “resident space objects” whose initial orbit 
parameters are required for a complete solution. The 

development of orbit determination techniques will always 

focus on providing a solution with minimal computation 

time.  
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