
poliastro: An Astrodynamics library written in
Python with Fortran performance

ICATT, March 16th 2016
Juan Luis Cano Rodríguez

Outline for Section 1

1. Introduction

2. Python as a core computational language
2.1 The Python programming language
2.2 Just-in-time compilation using numba
2.3 Benchmarks against Fortran
2.4 Gradual typing

3. Interfacing with other languages

4. Software reusability and Open Development

1/23

The presenter
Introducing myself

• Programmer at the Commercial Flight Dynamics & Operations
(CFDO) Department in GMV

• StudyingMSc Aeronautical Engineering at Universidad
Politécnica de Madrid

• Erasmus at Politecnico di Milano (MSc Aerospace Engineering)

• Free & Open Source Software (FOSS) advocate, Python
enthusiast and practicioner

2/23

Outline for Section 2

1. Introduction

2. Python as a core computational language
2.1 The Python programming language
2.2 Just-in-time compilation using numba
2.3 Benchmarks against Fortran
2.4 Gradual typing

3. Interfacing with other languages

4. Software reusability and Open Development

3/23

The Python programming language
Its presence in the scientific and academic community

• Python was started in 1989 and v1.0 released in 1994

• One of the most used languages in fields like Astronomy[2] and
small-to-medium Data Science

• “The Most Popular Introductory Teaching Language at Top U.S.
Universities”[3]

4/23

The Python programming language
Simple, readable and easy to learn

while count < numiter:
y = norm_r0 + norm_r + A * (psi * c3(psi) - 1) / c2(psi)**.5
...
xi = np.sqrt(y / c2(psi))
tof_new = (xi**3 * c3(psi) + A * np.sqrt(y)) / np.sqrt(k)

if np.abs((tof_new - tof) / tof) < rtol: # Convergence check
break

else:
count += 1
if tof_new <= tof: # Bisection check

psi_low = psi
else:

psi_up = psi
psi = (psi_up + psi_low) / 2

5/23

The Python programming language
...however, dynamic and slow

In [2]: list = list(range(0,100000))
In [3]: %%timeit

...: sum(list)

...:
1000 loops, best of 3: 1.32 ms per loop

In [4]: array = np.arange(0, 100000)
In [5]: %%timeit

...: np.sum(array)

...:
[...]
10000 loops, best of 3: 38.9 us per loop

6/23

Just-in-time compilation using numba

Ahead-of-time (AOT) compilation

Code is compiled before it is executed.

Just-in-time (JIT) compilation

Code is compiled during execution.

With numba, the code goes through several stages of optimization
using the LLVM compiler infrastructure until machine instructions for
the desired platform are generated

7/23

Just-in-time compilation using numba
An example

--- LINE 29 ---
$103.3 = unary(fn=-, value=psi) :: float64
$103.4 = global(gamma: <built-in function gamma>) :: [...]
$const103.5 = const(int, 5) :: int64
$103.6 = call $103.4($const103.5) :: (int64,) -> float64
$103.7 = $103.3 / $103.6 :: float64
delta = $103.7 :: float64

delta = (-psi) / gamma(2 + 2 + 1)

8/23

Just-in-time compilation using numba
An example

6 8 10 12 14 16 18 20
Time, JIT enabled (μs)

test_lambert_single_rev_valladote
st

warmup
False
True

120 140 160 180 200 220
Time, JIT enabled (μs)

test_lambert_single_rev_izzo

test_lambert_multi_rev_izzo

Te
st

warmup
False
True

880 900 920 940 960 980 1000 1020
Time, JIT disabled (μs)

warmup
False
True

200 220 240 260 280 300
Time, JIT disabled (μs)

warmup
False
True

Figure: Comparison of running times of the BMW-Vallado and Izzo
algorithms, with and without JIT compiling.

9/23

poliastro, a Python Astrodynamics library

• Pure Python, accelerated with numba

• Physical units (thanks to astropy[4])

• Analytical and numerical orbit propagation

• Conversion between position/velocity,
classical and equinoctial orbital elements

• Simple 2D trajectory plotting
• Hohmann and bielliptic maneuvers computation

• Initial orbit determination (Lambert problem)

• Planetary ephemerides through SPK SPICE kernels (thanks to
jplephem)

10/23

Benchmarks against Fortran
Fortran is fastest, but Python + numba is within the same order
of magnitude

Version Min Max Median Relative

Intel ifort, -O2 594620.8 654121.4 623536.2 1.0
GNU gfortran, -O2 358478.2 505127.0 454613.6 0.729
Python + numba 197610.9 206153.2 203615.8 0.327
pure Python 3502.7 3703.0 3639.6 0.006

Table: Benchmarking results

11/23

Gradual typing
New in Python 3.5 (2015)

def greeting(name: str) -> str:
return ’Hello ’ + name

Python 3.5 introduced a new provisional module adding type hints
focusing on providing indirect help to be used by Integrated Devel-
opment Environments (IDEs) and other tools to supply more useful
information to the developer1.

1https://www.python.org/dev/peps/pep-0484/
12/23

Outline for Section 3

1. Introduction

2. Python as a core computational language
2.1 The Python programming language
2.2 Just-in-time compilation using numba
2.3 Benchmarks against Fortran
2.4 Gradual typing

3. Interfacing with other languages

4. Software reusability and Open Development

13/23

C and C++: CFFI

from cffi import FFI

ffi = FFI()
ffi.cdef("""
double hyp2f1 (double a, double b, double c, double x);
""")
ffi.set_source("_hyper", """
double hyp2f1 (double a, double b, double c, double x);
""",

libraries=["md"],
)
if __name__ == ’__main__’:

ffi.compile()

14/23

C and C++: ctypes, Cython, SWIG

• ctypes2 is similar to CFFI, it’s available in the standard library
but less powerful

• SWIG3 generates bindings for parts written in C or C++ to
several languages, including Python

• Cython4 allows starting with pure Python code that gets
compiled into C for an immediate improvement in performance
- type declarations can be added to certain variables and
functions to allow more code to run natively

2https://docs.python.org/3/library/ctypes.html
3http://www.swig.org/
4http://cython.org/

15/23

https://docs.python.org/3/library/ctypes.html
http://www.swig.org/
http://cython.org/

Fortran: f2py
Excellent for legacy FORTRAN 77 code

f2py5wraps FORTRAN 77 and a subset of Fortran 956 directly in Python
by generating intermediate C wrappers.

$ f2py [-h module.pyf] -m module module.f90

5http://www.f2py.com/
6Notably, it does not support derived types

16/23

http://www.f2py.com/

Java and MATLAB

• JCC7 is "a C++ code generator that produces a C++ object
interface wrapping a Java library via Java’s Native Interface
(JNI)". It is successfully used by the Orekit Python wrapper,
which allows using the Orekit Java library from a Python
program.

• pymatbridge8 is a communication layer between MATLAB and
Python based on the ZeroMQ socket library. oct2py9 is an
equivalent tool for the GNU Octave project. The latter had been
successfully tested in poliastro v0.1.

7http://lucene.apache.org/pylucene/jcc/
8https://arokem.github.io/python-matlab-bridge/
9https://github.com/blink1073/oct2py

17/23

http://lucene.apache.org/pylucene/jcc/
https://arokem.github.io/python-matlab-bridge/
https://github.com/blink1073/oct2py

Outline for Section 4

1. Introduction

2. Python as a core computational language
2.1 The Python programming language
2.2 Just-in-time compilation using numba
2.3 Benchmarks against Fortran
2.4 Gradual typing

3. Interfacing with other languages

4. Software reusability and Open Development

18/23

Free/Open Source software
A complicated but important topic

• Examples of successful libraries for Astrodynamics: astropy[4]
(Python), Orekit (Java)

• However a high percentage of the software available on the
Internet has no license whatsoever (SOFA until 2009)

• Public Domain is not a sensible choice, since copyright law is
different from country to country

• Viral licenses (GPL family) pose concerns for companies and
cannot be combined with closed source products

• Fortunately, most scientific Python libraries are released
under permissive licenses (MIT and BSD)10

10http://nipy.sourceforge.net/software/license/johns_bsd_pitch.html
19/23

Open development
Some features

• Carrying development discussions on public mailing lists

• Displaying a public list of issues and known defects

• Publishing the complete history of the project using SCM11 tools

• Performing public code reviews

• Using Continuous Integration environments and striving for a
high statement or branch coverage

• Embracing democratic and transparent decision making
processes, with a focus on diversity and safety12

11Source Control Management
12Not specific to Open Development, but worth considering

20/23

Conclusions and future work

• Python is well considered in the scientific and technical
community

• Using the right tools and under certains circumstances it can
attain decent performance

• numba still misses support for high level functions and closures

• IDEs and libraries provide helpers for type checking

• Possibility to create powerful static analyzers

• There are several ways to communicate Python with lower-level
languages

• Code reuse and open development approaches lead to high
quality software

21/23

Bibliography
TEX, LATEX, and Beamer

[1] Dario Izzo. Revisiting Lambert’s problem. Springer Science +
Business Media, 2014.

[2] I. Momcheva and E. Tollerud. Software Use in Astronomy: an
Informal Survey. Available at
http://adsabs.harvard.edu/abs/2015arXiv150703989M.

[3] Philip Guo. Python is Now the Most Popular Introductory
Teaching Language at Top U.S. Universities

[4] Thomas P. Robitaille and others. Astropy: A community Python
package for astronomy. EDP Sciences, 2013.

22/23

http://adsabs.harvard.edu/abs/2015arXiv150703989M

Thanks!

• The software: https://poliastro.github.io

• Examples: http://nbviewer.jupyter.org/github/
poliastro/poliastro/blob/master/index.ipynb

• The paper:
https://www.overleaf.com/read/kjjbwvfkgrxs

• The mailing list: https://groups.io/g/poliastro-dev

• My email: � hello@juanlu.space

Per Python ad Astra!

23/23

https://poliastro.github.io
http://nbviewer.jupyter.org/github/poliastro/poliastro/blob/master/index.ipynb
http://nbviewer.jupyter.org/github/poliastro/poliastro/blob/master/index.ipynb
https://www.overleaf.com/read/kjjbwvfkgrxs
https://groups.io/g/poliastro-dev
mailto:hello@juanlu.space

	Introduction
	Python as a core computational language
	The Python programming language
	Just-in-time compilation using numba
	Benchmarks against Fortran
	Gradual typing

	Interfacing with other languages
	Software reusability and Open Development

