
POLIASTRO: AN ASTRODYNAMICS LIBRARY WRITTEN IN PYTHON WITH FORTRAN
PERFORMANCE

Juan Luis Cano Rodríguez

Universidad Politécnica de Madrid
Madrid, Spain

Helge Eichhorn

Technische Universität Darmstadt
Darmstadt, Germany

Frazer McLean

CS GmbH
Darmstadt, Germany

ABSTRACT

Python is a fast-growing language both for astronomic appli-
cations and for educational purposes, but it is often criticized
for its suboptimal performance and lack of type enforcement.
In this paper we present poliastro, a pure Python library for
Astrodynamics that overcomes these obstacles and serves as
a proof of concept of Python strengths and its suitability to
model complex systems and implement fast algorithms.

poliastro features core Astrodynamics algorithms (such
as resolution of the Kepler and Lambert problems) written
in pure Python and compiled using numba, a modern just-
in-time Python-to-LLVM compiler. As a result, preliminary
benchmarks suggest a performance increase close to the ref-
erence Fortran implementation, with negligible impact in the
legibility of the Python source. We analyze the effects of these
tools, along with the introduction of new ahead-of-time com-
pilers for numerical Python and optional type declarations, in
the interpreted and dynamic nature of the language.

poliastro relies on well-tested, community-backed li-
braries for low level astronomical tasks, such as astropy and
jplephem. We comment the positive outcomes of the new
open development strategies and the permissive, commercial-
friendly licenses omnipresent in the scientific Python ecosys-
tem.

While recent approaches involve writing Python pro-
grams which are translated on the fly to lower level code,
traditional Python libraries for scientific computing have suc-
ceeded because they leverage computing power to compiled
languages. We briefly present tools to build wrappers to For-
tran, C/C++, MATLAB and Java, which can be also useful
for validation and verification, reusability of legacy code and
other purposes.

1. INTRODUCTION

The Python programming language has seen broad recogni-
tion in the last decade among scientists and academics, being
one of the most popular languages in astronomy[1] and for
educational purposes[2]. It is highly trusted in corporative
environments as well as a tool for scripting, automating tasks
and creating high level APIs and wrappers.

However, the current situation of scientific codes is still
delicate: most scientists and engineers that write numerical
software (which often features a strong algorithmic com-
ponent and has tight performance requirements) usually do
not have any formal training on computer programming, let
alone software engineering best practices[3]. In fact, in the
Aerospace industry there is a sad track record of software
failures[4, 5] that could have been avoided by following
better software and systems engineering practices.

When selecting a certain programming language for a spe-
cific problem, we as engineers have the obligation to consider
as much information as possible and make an informed de-
cision based on technical grounds. For example, if defect
density were to be selected as the single figure to rank the
contenders, well-established languages for space applications
such as FORTRAN or C would perform worse than func-
tional languages such as Haskell or Erlang[6]. Another com-
mon misconception is to assume that each language features
certain properties, while languages are abstract specifications
and language implementations are the concrete systems we
can measure. Other metrics that could be taken into account
are readability and programmer productivity, specially con-
sidering that "programmers write roughly the same number
of lines of code per unit time regardless of the language they
use"[3].

In this paper we claim that the Python programming lan-
guage, with the aid of both young projects and solid, well
tested libraries, can be an optimal solution for the prototyping
stage of the development and a fair complement to traditional
alternatives in the production stage, in terms of performance,
availability, maturity and maintainability. As a demonstra-
tor we selected basic problems in Astrodynamics and com-
pared the performance of existing FORTRAN or C++ im-
plementations with our new Python implementations, com-
paring them in terms of code complexity and performance
in section 2. Our Python code is available as part of the
poliastro package, an open source Python library for As-
trodynamics and Orbital Mechanics focused on interplane-
tary applications and released under the MIT license[7]. As a
complement, in section 3 we present an overview of the tech-
niques that can be used to use code written in Fortran, C/C++,

while count < numiter:
y = norm_r0 + norm_r + A * (psi * c3(psi) - 1)

/ c2(psi)**.5
...
xi = np.sqrt(y / c2(psi))
tof_new = (xi**3 * c3(psi) + A * np.sqrt(y)) /

np.sqrt(k)

if np.abs((tof_new - tof) / tof) < rtol:
Convergence check
break

else:
count += 1
if tof_new <= tof: # Bisection check

psi_low = psi
else:

psi_up = psi
psi = (psi_up + psi_low) / 2

Fig. 1. Fragment of BMW-Vallado algorithm for Lambert’s
problem in Python. Notice its resemblance to pseudocode.

Java and MATLAB from Python, and their advantages and
tradeoffs.

To conclude, we remark that poliastro and many
other software packages would not be possible without the
vast number of open source projects that lay the foundations
for present and future work. Other authors have highlighted
the potential of open source in the aerospace industry in terms
of software reusability and collaboration between academia
and private companies[8]. In section 4 we comment the prac-
tical outcomes of this philosophy, the challenges that need
to be solved and its potential ramifications for the Aerospace
industry.

2. PYTHON AS A CORE COMPUTATIONAL
LANGUAGE

The Python programming language was started by Guido van
Rossum in 1989 as a successor to the ABC language, and
v1.0 was released in 19941. It is therefore not new, and in
fact it predates the Java language, first released in 1996. On
the other hand, Python first uses for scientific purposes ap-
peared as early as 1995, with the creation of a special inter-
est group on numerical arrays[9]. However, in recent times
the ecosystem has greatly improved, with the application of
Open Development principles (see 4 for further discussion),
the increasing interest and involvement of private companies
and the generous funds given to projects like IPython[10] and
Jupyter. Nowadays, it is one of the most used languages
in fields like Astronomy[11] and small-to-medium Data Sci-
ence, and heavily trusted for teaching undergraduate Com-
puter Science in top universities[2]. In figure 1 we can see a
fragment of one of the algorithms to solve Lambert’s problem

1http://python-history.blogspot.com.es/2009/01/brief-timeline-of-
python.html

In [1]: import numpy as np

In [2]: list = list(range(0,100000))

In [3]: %%timeit
...: sum(list)
...:

1000 loops, best of 3: 1.32 ms per loop

In [4]: array = np.arange(0, 100000)

In [5]: %%timeit
...: np.sum(array)
...:

The slowest run took 780.86 times longer than the
fastest. This could mean that

an intermediate result is being cached
10000 loops, best of 3: 38.9 µs per loop

Fig. 2. Microbenchmarks of pure Python versus NumPy

implemented in poliastro.
One of the most important differences between Python

and compiled languages like Fortran or C is its dynamic typ-
ing nature. The variety of type systems across has tradition-
ally been a major source of debate among programmers, and
in fact some studies suggest that there is "a small but sig-
nificant relationship between language class and defects"[6].
Languages featuring dynamic typing, as it is the case with
Python, are often easier to write and read but more difficult
to debug, as there are no guarantees about the types of the ar-
guments, and have worse performance. While there is an in-
creasing interest in developing type inference systems (see for
instance the Julia and Scala languages), these are extremely
difficult to set up for languages like Python [12].

Arguably the most important library in the scientific
Python stack is NumPy, which implements n-dimensional
numerical arrays and its related methods in C and wraps them
using the CPython API[13]. In figure 2 we can see some
microbenchmarks displaying the performance differences be-
tween two equivalent ways of adding up all the elements of
a sequence. The first one is implemented using a Python
dynamic list, whereas the second uses a NumPy array. As a
result, the Python version is two orders of magnitude slower.

NumPy is an fundamental piece of software that powers
most numerical codes written in Python nowadays. However,
it is not always obvious how to vectorize the operations to
make it suitable for using NumPy operations, and in some
cases excessive vectorization can hurt readability. In the fol-
lowing sections we analyze some alternatives that have been
put in place to overcome these limitations without greatly af-
fecting the philosophy of the language.

2.1. Just-in-time compilation using numba

As discussed earlier, while it is possible to use NumPy to vec-
torize certain kinds of numerical operations, there might be

--- LINE 29 ---
$103.3 = unary(fn=-, value=psi) :: float64
$103.4 = global(gamma: <built-in function

gamma>) :: [...]
$const103.5 = const(int, 5) :: int64
$103.6 = call $103.4($const103.5) :: (int64,)

-> float64
$103.7 = $103.3 / $103.6 :: float64
delta = $103.7 :: float64

delta = (-psi) / gamma(2 + 2 + 1)

Fig. 3. Example of numba annotation along corresponding
line of Python code.

other cases where this may not be feasible and where the dy-
namic nature of Python leads to a performance penalty, spe-
cially when the algorithm involves several levels of nested
looping. To overcome these limitations we used numba, an
open source library which can infer types for array-oriented
and math-heavy Python code and generate optimized machine
instructions using the LLVM compiler infrastructure[14].

numba works by inferring the types of the variables of
a Python function and refining them in several stages until
it generates assembly code for the desired platform. In fig-
ure 3 we see a small fragment of the code that implements the
Stumpff functions in poliastro along with its so-called Numba
Intermediate Representation, which is the first stage of the op-
timization process.

To test the suitability of Python and numba for writing
expensive mathematical algorithms in terms of performance
and legibility we compare two algorithms for solving Lam-
bert’s problem: a simple bisection iteration over the univer-
sal variable as presented in [15] and [16] (from now on, re-
ferred to as BMW-Vallado algorithm) and the more recent al-
gorithm by [17], based on a Householder iteration scheme
over a Lambert-invariant variable (see [18] for the definition).
These two algorithms are very different in nature: the former
favors a simple approach that is robust and simple to imple-
ment, while the latter employs clever analytical transforma-
tions and a higher order root finding method to converge in
very few iterations, hence using fewer function evaluations.
Also, the former works only for single revolution solutions,
whereas the latter can also find solutions corresponding to
multiple revolutions.

Both algorithms implemented in Python and accelerated
using numba are present in poliastro, a MIT-licensed
open source library dedicated to problems focused on inter-
planetary Astrodynamics problems, such as orbit propaga-
tion, solution of Lambert’s problem, conversion between po-
sition and velocity vectors and classical orbital elements and
orbit plotting. poliastro documentation and source code
are available online23.

2https://github.com/poliastro/poliastro
3http://poliastro.readthedocs.org/en/v0.5.0/

Kernel version Linux 2.6.32-504.3.3.el6.x86_64
Distribution CentOS 6.6.
Processors 4x Intel(R) Core(TM)
CPU family i7-2670QM CPU @ 2.20GHz
Memory 2974696 kB (Total)

Table 1. System information

We first performed some preliminary benchmarks to as-
sess the performance increase due to JIT-compiling the func-
tions. In figure 4 we displayed the distribution of running
times of the two algorithms, adding a multiple revolution so-
lution for the Izzo algorithm. The data was obtained using
pytest-benchmark and plotted using matplotlib and
seaborn[19][20]. We note several things:

• There is a significant improvement in running time for
both algorithms.

• This performance improvement is more evident for the
BMW-Vallado algorithm than for the Izzo algorithm. In
the first case it the difference is roughly two orders of
magnitude, while in the second case the running times
decreased in half.

• For the single revolution case, the Vallado algorithm
was significantly slower without JIT compiling, whereas
it was the fastest when numba was enabled. On the
other hand, only the Izzo algorithm is capable of com-
puting multiple revolution solutions.

The difference in effectiveness is probably due to the fact
that the Vallado algorithm performs more iterations while the
Izzo algorithm is optimized for converging faster, at the ex-
pense of evaluating derivatives up to third order[17]. These
results suggest that numba provides more performance boost
when applying to algorithms with heavy looping or several
levels of nesting.

2.2. Benchmarks against Fortran

Several implementations of the BMW-Vallado algorithm are
freely available on the Internet as the companion software of
Vallado’s book4, and the Fortran version was incorporated in
poliastro v0.2 and distributed under the same terms with
explicit permission of the author (see 3 for discussion on call-
ing Fortran functions from Python). In poliastro v0.3
the algorithm was translated to Python and accelerated with
numba.

For this paper we compared our own Python implemen-
tation of the Izzo algorithm with the one written in Fortran
2003/2008 available in Fortran-Astrodynamics-Toolkit
(https://github.com/jacobwilliams/Fortran%
2DAstrodynamics%2DToolkit), which is itself based

4http://celestrak.com/software/vallado-sw.asp

https://github.com/jacobwilliams/Fortran%2DAstrodynamics%2DToolkit
https://github.com/jacobwilliams/Fortran%2DAstrodynamics%2DToolkit

6 8 10 12 14 16 18 20

Time, JIT enabled (µs)

test_lambert_single_rev_valladote
st

warmup
False
True

120 140 160 180 200 220

Time, JIT enabled (µs)

test_lambert_single_rev_izzo

test_lambert_multi_rev_izzo

Te
st

warmup
False
True

880 900 920 940 960 980 1000 1020
Time, JIT disabled (µs)

warmup
False
True

200 220 240 260 280 300
Time, JIT disabled (µs)

warmup
False
True

Fig. 4. Comparison of running times of the BMW-Vallado and Izzo algorithms, with and without JIT compiling. Notice the
difference in time scales. Darker boxes were measured without warming up.

on the original code written by Izzo in C++5. This algorithm
has the advantage that it can compute solutions correspond-
ing to several full revolutions, allowing for less expensive
trajectories at the cost of transfer time.

The tests were performed in a virtualized CentOS ma-
chine to avoid interferences from the outside world and pro-
vide homogeneous results. In table 1 we can see a brief sum-
mary of the system information.

The tests consisted in measuring the number of so-
lutions per unit time that the programs could compute,
to take advantage to the already written benchmarks for
Fortran-Astrodynamics-Toolkit. We compiled
the Fortran code with GNU gfortran and Intel ifort, while the
Python code was benchmarked with and without JIT compi-
lation for reference purposes. The results are summarized in
table 2.

The fastest was the Fortran version compiled with Intel
ifort, followed by the GNU gfortran compiler, whereas the
Python versions are the slowest: this agrees with our expec-
tations. However, we note that, although there are evi-
dent performance differences between all the versions, the
numba version manages to run at 44.8 % the speed of
the gfortran version, and at 32.7 % of the ifort version.
This is a clear difference from the behaviour of the pure, non-
accelerated Python version, which lags two orders of magni-
tude slower than the Fortran programs.

With these modest performance results in mind, we point
out that the Python version has fewer lines of code, is arguably
more readable and works on all major operative systems with-
out changes or intermediate compilation steps. We argue that
these assets are also of high value and that should be taken
into account when selecting a programming language.

5https://github.com/esa/pykep/

def greeting(name: str) -> str:
return ’Hello ’ + name

Fig. 5. Code annotated with type hints

2.3. Gradual typing

We have already discussed the advantages of using numba
to accelerate numerical Python code. We have also seen that
whether we manually specify the expected types of our func-
tions or let the computer automatically infer them, in both
cases there is some sort of type enforcement, which on the
other hand is not part of the language itself and does not sup-
port its complete set of features. Python 3.5 introduced a new
provisional module adding type hints (also known as grad-
ual typing), this time focusing on providing indirect help to
be used by Integrated Development Environments (IDEs) and
other tools to supply more useful information to the devel-
oper6. In figure 5 we can see how this syntax is implemented.

These types can also be written to separate files ("stub
files"), in a similar way than it is already done for C and
C++ header files, which can, in addition, be distributed inside
the project. This has the advantage that the original sources
are not altered and that it keeps backwards compatibility with
older versions of Python.

3. INTERFACE WITH COMPILED LANGUAGES

While we promote the advantages of Python as a numeri-
cal computing language, we also recognize the tremendous
value and expertise already present in mature, battle-tested
programs and libraries. In fact, the scientific Python commu-
nity is the best example of how to combine both compiled and

6https://www.python.org/dev/peps/pep-0484/

Version Minimum Maximum Median Relative IQR
Intel ifort, -O2 594620.8 654121.4 623536.2 1.0 25861.2

GNU gfortran, -O2 358478.2 505127.0 454613.6 0.729 68265.5
poliastro, numba 197610.9 206153.2 203615.8 0.327 3296.5

poliastro, pure Python 3502.7 3703.0 3639.6 0.006 65.6

Table 2. Benchmarking results

interpreted languages: since the very beginning, many Python
libraries were written as wrappers to old FORTRAN or C++
code, using tools like f2py and SWIG (discussed below)[9]. It
is therefore our intention to build on Python for new code and
at the same time take advantage of available libraries written
in different languages to avoid duplicating efforts.

3.1. C and C++: ctypes, Cython, SWIG, CFFI

As the reference Python implementation (CPython) is written
in C, interfacing with C libraries is relatively simple. CFFI
is an improvement over Python’s ctypes module in the
standard library, both of which use libffi. These modules
allow C libraries to be exposed to Python. Additionally, CFFI
automatically parses type declarations and function signa-
tures, avoiding the need to re-write them in Python before
they can be used.

Cython and SWIG are both hybrid approaches for inter-
acting with C. SWIG supports multiple languages, so it is not
limited to Python. While SWIG generates bindings for parts
written in C, Cython takes a different approach which allows
starting with pure Python code that gets compiled into C for
an immediate improvement in performance. Type declara-
tions can be added to certain variables and functions to allow
more code to run natively. Cython has the advantage that it
can talk to Python and C in the same source file due to its
own Python-like syntax. This hybrid approach allows gradual
improvement as pain points are found. Cython also integrates
well with NumPy’s type system. For the best performance im-
provements, it is possible to write in pure Cython, and have
the compiler create two separate versions of a function: one
exposed to Python, and a faster one used within Cython.

3.2. Fortran: f2py

Although we could use an intermediate C wrapper to easily
call Fortran code using the ISO C binding capabilities intro-
duced in version 2003, there is no reliable way of doing this
with Fortran 95 and earlier due to the lack of standardization.
To solve this problem, specially for FORTRAN 77 code, the
f2py project was created in the early days of the scientific
Python community, which wraps FORTRAN 77 and a subset
of Fortran 95 directly in Python[21].

3.3. Others: Java, MATLAB

As we already said for the Fortran case, once we have solved
the problem of the interoperability with C we could easily
write intermediate wrappers to many other languages, as C is
lingua franca in the computing world. For the case of Java
and MATLAB there are some tools that can help the develop-
ers with some parts of the process.

• To call Java libraries from Python programs one of
the most visible options is JCC (http://lucene.
apache.org/pylucene/jcc/). According to its
website, JCC is "a C++ code generator that produces a
C++ object interface wrapping a Java library via Java’s
Native Interface (JNI)". Besides, "JCC also generates
C++ wrappers that conform to Python’s C type system
making the instances of Java classes directly available
to a Python interpreter". It is successfully used by the
Orekit Python wrapper, which allows using the Orekit
Java library from a Python program.

• Regarding the MATLAB environment, the most mod-
ern alternative is pymatbridge (https://arokem.
github.io/python-matlab-bridge/), a com-
munication layer between MATLAB and Python based
on the ZeroMQ socket library[22]. An equivalent tool
for the GNU Octave project[23], which allows running
MATLAB-like programs using only free software, is
oct2py (https://github.com/blink1073/
oct2py). The latter had been successfully tested in
poliastro v0.1 before the Octave code was replaced
by Fortran subroutines.

4. DEVELOPMENT APPROACH

poliastro relies on well-tested, community-backed li-
braries for low level astronomical tasks, such as astropy[1]
and jplephem. The library Orekit is another successful ex-
ample of a software project developed in the open in the
Astrodynamics community[24]. In this section we com-
ment the positive outcomes of the new open development
strategies and the permissive, commercial-friendly licenses
omnipresent in the scientific Python ecosystem.

http://lucene.apache.org/pylucene/jcc/
http://lucene.apache.org/pylucene/jcc/
https://arokem.github.io/python-matlab-bridge/
https://arokem.github.io/python-matlab-bridge/
https://github.com/blink1073/oct2py
https://github.com/blink1073/oct2py

4.1. Free/Open Source software

Software licensing is usually an underestimated topic that
should not be taken lightly for the reasons explained below.
In particular, some surveys suggest that a high percentage of
the software available on the Internet has no license whatso-
ever7, which, under modern copyright law, might mean the
opposite of what original authors intended8. This problem is
more pervasive than anticipated: for example, the IERS soft-
ware did not have a proper software license put in place until
20099, despite being extremely important in Flight Dynamics
to compute changes of coordinate reference frames. Releas-
ing works into the public domain is not a sensible choice,
since copyright law is different from country to country and
the implications remain unclear[25].

Open source software has a long history, with its roots
dating back to the creation of the Free Sofware movement
in the mid eighties[26]. A distinction is often made between
"open source" and "free", in that the latter requires derivative
works and linking programs to be released under the same
license (which is often referred to as the "viral" nature of such
licenses, see[27]). For obvious reasons, this distinction has
profound implications on the commercial availability of the
software.

Fortunately, the open source culture dominates in the sci-
entific Python community, and is therefore safe to assume that
most numerical Python libraries can be reused in commercial,
closed source products10. This is an important advantage,
since it means that companies usually do not have to worry
about licensing or linking issues regarding their products, as
long as they ship the proper citations and disclaimers. It also
poses a great challenge for open source maintainers, since
commercial users do not always contribute code back and
non-commercial users often feel entitled to ask for features
to be developed for free. The question on how to make open
source software sustainable is still open and research is ongo-
ing, and requires a deep implication of the stakeholders[28].

4.2. Open Development

For some scientific software packages it is common practice
to upload new releases to a website or FTP directory to make
them available to users, while there is no public list of open
issues and they have to be privately reported to a private email
address. That is the case with the Standards of Fundamental
Astronomy (SOFA) Software Collection.

The value of open source software cannot be overstated:
some studies suggest that, under certain circumstances, open
source software will be of higher quality than the equiva-
lent closed source counterpart[29]. However, as some have
pointed out, for smaller projects it might not be viable to just

7http://www.theregister.co.uk/2013/04/18/github_licensing_study/
8https://opensource.com/law/13/8/github-poss-licensing
9https://igscb.jpl.nasa.gov/pipermail/igsmail/2009/006005.html

10http://nipy.sourceforge.net/software/license/johns_bsd_pitch.html

publish releases when they are ready[30]. Many software
projects follow a more open approach, with various degrees
of adoption and success, which we will refer to as "Open De-
velopment"11. Among the characteristics of this approach we
can name:

• Carrying development discussions on public mailing
lists,

• Displaying a public list of open issues and known de-
fects (as well as fixed ones),

• Publishing the complete history of the project using
source control management tools,

• Performing public code reviews based on the previous
two,

• Using Continuous Integration environments and striv-
ing for a high rate of statement or branch coverage,

• Embracing democratic and transparent decision mak-
ing processes, with a focus on diversity and safety

The benefits of these development practices to commer-
cial or hybrid projects have been studied (see [31]), and some
companies have started public debates to explore their via-
bility12. We therefore encourage astrodynamicists and private
companies to engage in the discussion and explore novel ways
of developing software for higher quality and better reuse.

5. CONCLUSIONS

Developing numerical and scientific software in a sustainable,
consistent way is key for the success of many engineering
projects. We claim that, for Astrodynamics projects, we can
consider options different than the ones that have been tradi-
tionally used, specially since they already have strong roots
in scientific and academic fields. We have shown that we can
use numba, a young yet powerful tool, to increase the per-
formance of our numerical Python code, with dramatic speed
increments in some cases. We have performed some software
benchmarks of the Izzo algorithm implemented both in For-
tran 2003 and Python, obtaining that the best performance is
achieved with Fortran compilers. However, the JIT compiled
Python version stayed within the same order of magnitude
of the Fortran versions and two orders of magnitude above
the non accelerated version, and should therefore be consid-
ered as a valid alternative, at least in the initial stages of the
project. To combine Python with other languages pervasive
in Astrodynamics we have listed some tools that we can use
to call C/C++, Fortran, Java and MATLAB/Octave code from
Python. To conclude, we have described the advantages of
open source and open development methods and highlighted

11https://opendevelopmentmethod.org/
12http://paypal.github.io/InnerSourceCommons/

their importance for future developments both for commercial
and non commercial software.

Acknowledgements. I am grateful to the Free and Open Source Commu-
nity in general, and specially the developers that work on Python, NumPy,
SciPy, matplotlib, Jupyter and astropy. This extends to the people that make
it possible to have free (as in freedom) operative systems, compilers, text ed-
itors, IDEs and browsers. I also thank Helgee Eichhorn and Frazer McLean
for their input, Alberto Lorenzo for his invaluable work on the Continuous
Integration infrastructure and GMV for allowing me to prepare this article in
working hours. To conclude, I thank the European Commission, the Erasmus
Programme and the Technical University of Madrid for allowing me to study
one year at Politecnico di Milano, which sparked my passion for Astrody-
namics and enrichened my vision of the world.

6. REFERENCES

[1] Thomas P. Robitaille et al., “Astropy: A community Python package
for astronomy,” Astronomy & Astrophysics, vol. 558, pp. A33, sep
2013.

[2] Philip Guo, “Python is Now the Most Popular Intro-
ductory Teaching Language at Top U.S. Universities,”
http://web.archive.org/web/20160218070508/
http://cacm.acm.org/blogs/blog-cacm/176450%
2Dpython%2Dis%2Dnow%2Dthe%2Dmost%2Dpopular%
2Dintroductory%2Dteaching%2Dlanguage%2Dat%
2Dtop%2Dus%2Duniversities/fulltext, 2014.

[3] Greg Wilson et al., “Best Practices for Scientific Computing,” PLoS
Biology, vol. 12, no. 1, pp. e1001745, jan 2014.

[4] Arden Albee et al., “Report on the loss of the Mars Polar Lander and
Deep Space 2 missions,” 2000.

[5] JL Lions et al., “Report by the inquiry board on the Ariane 5 flight 501
failure,” Joint Communication ESA-CNES, 1996.

[6] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar De-
vanbu, “A large scale study of programming languages and code qual-
ity in github,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering - FSE 2014. 2014,
Association for Computing Machinery (ACM).

[7] Juan Luis Cano Rodríguez et al., “poliastro 0.5.0,” mar 2016.

[8] Sven Ziemer and Gernot Stenz, “The case for open source software
in aeronautics,” Aircraft Eng & Aerospace Tech, vol. 84, no. 3, pp.
133–139, may 2012.

[9] K. Jarrod Millman and Michael Aivazis, “Python for Scientists and
Engineers,” Comput. Sci. Eng., vol. 13, no. 2, pp. 9–12, mar 2011.

[10] Fernando Perez and Brian E. Granger, “IPython: A System for Interac-
tive Scientific Computing,” Comput. Sci. Eng., vol. 9, no. 3, pp. 21–29,
2007.

[11] I. Momcheva and E. Tollerud, “Software Use in Astronomy: an Infor-
mal Survey,” ArXiv e-prints, jul 2015.

[12] Brett Cannon, Localized type inference of atomic types in python,
Ph.D. thesis, CALIFORNIA POLYTECHNIC STATE UNIVERSITY
San Luis Obispo, 2005.

[13] Stéfan van der Walt, S Chris Colbert, and Gaël Varoquaux, “The
NumPy Array: A Structure for Efficient Numerical Computation,”
Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30, mar 2011.

[14] Numba Development Team, “Numba,” http://numba.pydata.
org, 2016, Version 0.24.

[15] Roger R Bate, Donald D Mueller, and Jerry E White, Fundamentals of
astrodynamics, Courier Corporation, 1971.

[16] David A Vallado, Fundamentals of astrodynamics and applications,
vol. 12, Springer Science & Business Media, 2001.

[17] Dario Izzo, “Revisiting Lambert’s problem,” Celest Mech Dyn Astr,
vol. 121, no. 1, pp. 1–15, oct 2014.

[18] RH Gooding, “A procedure for the solution of Lambert’s orbital
boundary-value problem,” Celestial Mechanics and Dynamical Astron-
omy, vol. 48, no. 2, pp. 145–165, 1990.

[19] Michael Droettboom; John Hunter; Thomas A Caswell; Eric Firing;
Jens Hedegaard Nielsen; Phil Elson; Benjamin Root; Darren Dale; Jae-
Joon Lee; Jouni K. Seppänen; Damon McDougall; Andrew Straw;
Ryan May; Nelle Varoquaux; Tony S Yu; Eric Ma; Charlie Moad;
Steven Silvester; Christoph Gohlke; Peter Würtz; Thomas Hisch; Fed-
erico Ariza; Cimarron; Ian Thomas; James Evans; Paul Ivanov; Jeff
Whitaker; Paul Hobson; mdehoon; Matt Giuca;, “matplotlib: mat-
plotlib v1.5.1,” 2016.

[20] Michael Waskom; Olga Botvinnik; Paul Hobson; John B. Cole;
Yaroslav Halchenko; Stephan Hoyer; Alistair Miles; Tom Augspurger;
Tal Yarkoni; Tobias Megies; Luis Pedro Coelho; Daniel Wehner; cyn-
ddl; Erik Ziegler; diego0020; Yury V. Zaytsev; Travis Hoppe; Skipper
Seabold; Phillip Cloud; Miikka Koskinen; Kyle Meyer; Adel Qalieh;
Dan Allan;, “seaborn: v0.5.0 (November 2014),” 2014.

[21] Pearu Peterson, “F2PY: a tool for connecting Fortran and Python pro-
grams,” International Journal of Computational Science and Engineer-
ing, vol. 4, no. 4, pp. 296–305, 2009.

[22] Pieter Hintjens, ZeroMQ: Messaging for Many Applications, O’Reilly
Media, Inc., 2013.

[23] John Wesley Eaton, David Bateman, and Søren Hauberg, Gnu octave,
Network thoery London, 1997.

[24] Véronique Pommier-Maurussane and Luc Maisonobe, “Orekit: an
Open-source Library for Operational Flight Dynamics Applications,”
in International Conference on Astrodynamic Tools and Techniques
(ICATT), ESA/ESAC, Madrid, Spain, 2010, pp. 3–6.

[25] Ronan Deazley, Rethinking copyright: history, theory, language, Ed-
ward Elgar Publishing, 2006.

[26] Richard Stallman, “The GNU Manifesto,” j-DDJ, vol. 10, no. 3, pp.
30–??, mar 1985.

[27] Richard Stallman, “Viewpoint Why open source misses the point of
free software,” Communications of the ACM, vol. 52, no. 6, pp. 31–33,
2009.

[28] Sonali K. Shah, “Motivation Governance, and the Viability of Hybrid
Forms in Open Source Software Development,” Management Science,
vol. 52, no. 7, pp. 1000–1014, jul 2006.

[29] Jennifer W. Kuan, “Open Source Software as Consumer Integration
Into Production,” SSRN Electronic Journal, 2001.

[30] Andreas Prlić and James B. Procter, “Ten Simple Rules for the Open
Development of Scientific Software,” PLoS Comput Biol, vol. 8, no.
12, pp. e1002802, dec 2012.

[31] Audris Mockus, Roy T Fielding, and James D Herbsleb, “Two case
studies of open source software development: Apache and Mozilla,”
ACM Transactions on Software Engineering and Methodology, vol. 11,
no. 3, pp. 309–346, jul 2002.

http://web.archive.org/web/20160218070508/http://cacm.acm.org/blogs/blog-cacm/176450%2Dpython%2Dis%2Dnow%2Dthe%2Dmost%2Dpopular%2Dintroductory%2Dteaching%2Dlanguage%2Dat%2Dtop%2Dus%2Duniversities/fulltext
http://web.archive.org/web/20160218070508/http://cacm.acm.org/blogs/blog-cacm/176450%2Dpython%2Dis%2Dnow%2Dthe%2Dmost%2Dpopular%2Dintroductory%2Dteaching%2Dlanguage%2Dat%2Dtop%2Dus%2Duniversities/fulltext
http://web.archive.org/web/20160218070508/http://cacm.acm.org/blogs/blog-cacm/176450%2Dpython%2Dis%2Dnow%2Dthe%2Dmost%2Dpopular%2Dintroductory%2Dteaching%2Dlanguage%2Dat%2Dtop%2Dus%2Duniversities/fulltext
http://web.archive.org/web/20160218070508/http://cacm.acm.org/blogs/blog-cacm/176450%2Dpython%2Dis%2Dnow%2Dthe%2Dmost%2Dpopular%2Dintroductory%2Dteaching%2Dlanguage%2Dat%2Dtop%2Dus%2Duniversities/fulltext
http://web.archive.org/web/20160218070508/http://cacm.acm.org/blogs/blog-cacm/176450%2Dpython%2Dis%2Dnow%2Dthe%2Dmost%2Dpopular%2Dintroductory%2Dteaching%2Dlanguage%2Dat%2Dtop%2Dus%2Duniversities/fulltext
http://numba.pydata.org
http://numba.pydata.org

	 Introduction
	 Python as a core computational language
	 Just-in-time compilation using numba
	 Benchmarks against Fortran
	 Gradual typing

	 Interface with compiled languages
	 C and C++: ctypes, Cython, SWIG, CFFI
	 Fortran: f2py
	 Others: Java, MATLAB

	 Development approach
	 Free/Open Source software
	 Open Development

	 Conclusions
	 References

