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Introduction

Multiobjective constrained optimization

Constrained multiobjective optimization problem

min
x∈Ω

f(x) = (f1(x), . . . , fm(x))T

with

Ω = {x ∈ [`, u] ⊆ Rn : gj(x) ≤ 0, j = 1, . . . , p, hl(x) = 0, l = 1, . . . , q}

` ∈ (R ∪ {−∞})n, u ∈ (R ∪ {+∞})n;

Several objectives, often con�icting.

All objective functions are at least C2;

All constraint functions are at least C1;

The approach is valid for unconstrained optimization
(p, q = 0, ` = −∞n, u =∞n).
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The algorithm Main lines

Algorithm main lines

Does not aggregate any of the objective functions

Uses SQP based techniques for MOO

Keeps a list of nondominated points

Constraints violations are considered as additional objectives

Tries to capture the whole Pareto front from two algorithmic stages:
search and re�ning
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The algorithm An illustration

Algorithm illustrated - setup

x1 

x2 

x2 

x1 

f1 

f2 

A two dimensional (n = 2 and m = 2) example.

List of points at a given iteration {x1, x2}.
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The algorithm An illustration

Algorithm illustrated - spread

x1 

x2 

x2 

x1 

f1 

f2 
d1 

d2 

di is a descent direction for fi

The new computed point x1 + di (in fact x1 + αdi) will not be dominated
by x1 (but may dominate or be dominated by other points in the list)
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The algorithm An illustration

Algorithm illustrated - re�ning

x1 

x2 

x2 

x1 

f1 

f2 

d

d̄ is a descent (non-ascending) direction for all objective functions

The new computed point x2 + d̄ will dominate x2 (and may dominate or be
dominated by other points in the list)
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The algorithm Some details

Search direction computation

For each xk in the list of nondominated points:

Spread (i = 1, . . . ,m)

di ∈ arg min
d∈Rn

∇fi(xk)Td+
1

2
dTHid

s.t. gj(xk) +∇gj(xk)Td ≤ 0, j = 1, . . . , p

hl(xk) +∇hl(xk)Td = 0, l = 1, . . . , q

` ≤ xk + d ≤ u

where Hi is a positive de�nite matrix.

di is a descent direction for fi and

xk + αdi will be a trial point for our list of nondominated points.

A.I.F. Vaz (ICATT2016) MOSQP March 14-17 10 / 23



The algorithm Some details

Search direction computation

For each xk in the list of nondominated points:

Re�ning

min
x∈Rn

m∑
i=1

fi(x)

s.t. fi(x) ≤ fi(xk), i = 1, . . . ,m

gj(x) ≤ 0, j = 1, . . . , p

hl(x) = 0, l = 1, . . . , q

Iterations of an SQP-type method for this problem are carried out, using xk
as a starting point.

A.I.F. Vaz (ICATT2016) MOSQP March 14-17 11 / 23



The algorithm Some details

Some theoretical considerations

From spread stage we are obtaining new (nondominated) points

The spread stage performs a �nite number of iterations (we are not
looking for a too big � unpractical � Pareto front approximation)

The re�ning stage drives all the available list points to Pareto
criticality,

by obtaining a new point that improves (decreases or maintains) all
the objective function values

(Local) Pareto criticality is possible to verify based on the re�ning
single-objective optimization problem

A convergence theory is available for the proposed algorithm
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Implementation Implementation

Implementation

Implemented in MATLAB (fast coding, high computational time)

(Single-objective) Subproblems are solved by quadprog and fmincon

MATLAB solvers

Maximum of 20 iterations on the spread stage

We consider three possibilities for the Hi matrix:
Hi = Im in both stages

Hi = (∇2fi(xk) + Ei) in both stages

Hi = Im in the spread stage and Hi = (∇2fi(xk) + Ei) in the re�ning
stage

Two (list) initialization strategies are implemented:

line � a line between ` and u (xi = `+ iu−`
2nS

, i = 1, . . . , 2nS).
rand � a uniform (`, u) random distribution.
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Numerical results Test set and solvers

Test set

In fact the majority of the MOO test problems used in the literature
are suitable for our approach (derivatives are available).

Some problems were not di�erential at one point of the feasible region
and we consider an adapted problem (i.e.

√
x at x = 0 and we

consider ` = 0.001).

The problems are coded in AMPL (and a MATLAB-AMPL interface
was used). Exact derivatives are provided by AMPL.

67 problems (50 problems with m = 2, 17 problems with m = 3), n
varying between 2 and 30.

21 test problems (12 problems with m = 2, 9 problems with m = 3),
7 with nonlinear constraints, 9 with linear constraints, and 5 with
both, n varying between 2 and 20.
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Numerical results Test set and solvers

Solvers

We consider six implementations of the MOSQP solver: MOSQP
(H = I, line), MOSQP (H = ∇2f, line), MOSQP
(H = (I,∇2f), line), MOSQP (H = I, rand), MOSQP
(H = ∇2f, rand), MOSQP (H = (I,∇2f), rand).

The MOSQP solver is compared against NSGA-II (C version) and
MOScalar.

We report extensive numerical results using performance and data
pro�les.

For performance pro�les we consider the Purity, Spread � Gamma
Metric, Spread � Delta Metric, and the Hypervolume metrics.

While data pro�le indicate how likely is an algorithm to `solve' a
problem, given some computational budget.
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Numerical results � real-applications on Space Engineering

Cassini 1 bi-objective problem

f1 is the total ∆V and f2 is the squared total travel time.
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Numerical results � real-applications on Space Engineering

Rosetta bi-objective problem

f1 is the total ∆V and f2 is the squared total travel time.
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