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Introduction

Multiobjective constrained optimization

Constrained multiobjective optimization problem

min  f(z) = (f(@),.., fm(2)"

Q={zecl,uy CR":gj(x)<0,j=1,...,p, h(z)=0,l=1,...,q}
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Q={zecl,uy CR":gj(x)<0,j=1,...,p, h(z)=0,l=1,...,q}

o /e (RU{—c0})", ue (RU{+oc})™

@ Several objectives, often conflicting.

o All objective functions are at least C?;

@ All constraint functions are at least C';

@ The approach is valid for unconstrained optimization
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The algorithm Main lines

Algorithm main lines

@ Does not aggregate any of the objective functions

o Uses SQP based techniques for MOO

o Keeps a list of nondominated points

@ Constraints violations are considered as additional objectives

@ Tries to capture the whole Pareto front from two algorithmic stages:
search and refining
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Anllustration
Algorithm illustrated - setup

Xy

xlq

Xy

A two dimensional (n = 2 and m = 2) example.

List of points at a given iteration {z!, 22}
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Anllustration
Algorithm illustrated - spread

Xy

d; is a descent direction for f;

The new computed point ! + d; (in fact ' 4 ad;) will not be dominated
by 2! (but may dominate or be dominated by other points in the list)
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Anllustration
Algorithm illustrated - refining

Xy

Xy

d is a descent (non-ascending) direction for all objective functions

The new computed point 22 + d will dominate 22 (and may dominate or be
dominated by other points in the list)
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QLIPSO OT Some details

Search direction computation

For each xj, in the list of nondominated points:

Spread (i =1,...,m)

1
d; € arg 52}% V fi(zp)Td + idTHid

st. gj(zr) + Vgi(z)Td<0, j=1,...,p
hi(zg) + Viy(z)Td=0, 1=1,...,q
(<zp+d<u

where H; is a positive definite matrix.
d; is a descent direction for f; and

xx + ad; will be a trial point for our list of nondominated points.
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QLIPSO OT Some details

Search direction computation

For each xj, in the list of nondominated points:

Refining
m
min z;fi(ﬂv)
s.t fz(x)gfz(xk)v =1, ,m
gi(x) <0, j=1,....p

4

Iterations of an SQP-type method for this problem are carried out, using x

as a starting point.
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Some theoretical considerations

e From spread stage we are obtaining new (nondominated) points

@ The spread stage performs a finite number of iterations (we are not
looking for a too big — unpractical — Pareto front approximation)

@ The refining stage drives all the available list points to Pareto
criticality,

@ by obtaining a new point that improves (decreases or maintains) all
the objective function values

o (Local) Pareto criticality is possible to verify based on the refining
single-objective optimization problem

@ A convergence theory is available for the proposed algorithm
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Implementation Implementation

Implementation

@ Implemented in MATLAB (fast coding, high computational time)

@ (Single-objective) Subproblems are solved by quadprog and fmincon
MATLAB solvers

@ Maximum of 20 iterations on the spread stage
o We consider three possibilities for the H; matrix:
e H; =1, in both stages
o H; = (V2fi(zr) + E;) in both stages
o H; = I, in the spread stage and H; = (V2f;(x;) + E;) in the refining

stage

e Two (list) initialization strategies are implemented:

e line - a line between ¢ and u (z; = E—i—z’é‘;f, i=1,...,2nS).

e rand — a uniform (¢, u) random distribution.
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@ In fact the majority of the MOO test problems used in the literature
are suitable for our approach (derivatives are available).

@ Some problems were not differential at one point of the feasible region
and we consider an adapted problem (i.e. v/ at z = 0 and we
consider £ = 0.001).

@ The problems are coded in AMPL (and a MATLAB-AMPL interface
was used). Exact derivatives are provided by AMPL.

@ 67 problems (50 problems with m = 2, 17 problems with m = 3), n
varying between 2 and 30.

@ 21 test problems (12 problems with m = 2, 9 problems with m = 3),
7 with nonlinear constraints, 9 with linear constraints, and 5 with
both, n varying between 2 and 20.

A.lF. Vaz (ICATT2016) MOSQP March 14-17 16 / 23



NOTOYIENTETI S Test set and solvers

Solvers

@ We consider six implementations of the MOSQP solver: MOSQP
(H =1, 1line), MOSQP (H = V?f, line), MOSQP
(H = (I,V?f), line), MOSQP (H = I, rand), MOSQP
(H = V?f, rand), MOSQP (H = (I,V?f), rand).

A.lF. Vaz (ICATT2016) MOSQP March 14-17 17 / 23



NOTOYIENTETI S Test set and solvers

Solvers

@ We consider six implementations of the MOSQP solver: MOSQP
(H =1, 1line), MOSQP (H = V?f, line), MOSQP
(H = (I,V?f), line), MOSQP (H = I, rand), MOSQP
(H = V?f, rand), MOSQP (H = (I,V?f), rand).

@ The MOSQP solver is compared against NSGA-II (C version) and
MOScalar.

A.lLF. Vaz (ICATT2016) MOSQP March 14-17

17 / 23



NOTOYIENTETI S Test set and solvers

Solvers

@ We consider six implementations of the MOSQP solver: MOSQP
(H =1, 1line), MOSQP (H = V?f, line), MOSQP
(H = (I,V?f), line), MOSQP (H = I, rand), MOSQP
(H = V?f, rand), MOSQP (H = (I,V?f), rand).

@ The MOSQP solver is compared against NSGA-II (C version) and
MOScalar.

e We report extensive numerical results using performance and data

profiles.

A.lLF. Vaz (ICATT2016) MOSQP March 14-17

17 / 23



NOTOYIENTETI S Test set and solvers

Solvers

@ We consider six implementations of the MOSQP solver: MOSQP
(H =1, 1line), MOSQP (H = V?f, line), MOSQP
(H = (I,V?f), line), MOSQP (H = I, rand), MOSQP
(H = V?f, rand), MOSQP (H = (I,V?f), rand).

@ The MOSQP solver is compared against NSGA-II (C version) and
MOScalar.

e We report extensive numerical results using performance and data

profiles.

e For performance profiles we consider the Purity, Spread — Gamma
Metric, Spread — Delta Metric, and the Hypervolume metrics.

A.lF. Vaz (ICATT2016) MOSQP March 14-17 17 / 23



NOTOYIENTETI S Test set and solvers

Solvers

@ We consider six implementations of the MOSQP solver: MOSQP
(H =1, 1line), MOSQP (H = V?f, line), MOSQP
(H = (I,V?f), line), MOSQP (H = I, rand), MOSQP
(H = V?f, rand), MOSQP (H = (I,V?f), rand).

@ The MOSQP solver is compared against NSGA-II (C version) and
MOScalar.

e We report extensive numerical results using performance and data

profiles.

e For performance profiles we consider the Purity, Spread — Gamma
Metric, Spread — Delta Metric, and the Hypervolume metrics.

e While data profile indicate how likely is an algorithm to ‘solve’ a
problem, given some computational budget.
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Numerical results — real-applications on Space Engineering

Cassini 1 bi-objective problem

f1 is the total AV and f5 is the squared total travel time.

Cassini Pareto fronts, solvers best run
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Numerical results — real-applications on Space Engineering

Rosetta bi-objective problem

f1 is the total AV and f5 is the squared total travel time.

Rosetta Pareto fronts, solvers best run
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Conclusions

Proposal of a method for constrained multi-objective optimization
based on SQP (MOSQP)

A convergence proof to (local) Pareto points is established
@ Implementation of the proposed algorithm in MATLAB

@ Numerical results confirm the solver competitiveness and robustness
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