OPTIMAL REAL-TIME LANDING USING DEEP NETWORKS

Carlos Sdnchez-Sdnchez!, Dario Izzo', Daniel Hennes

2

I Advanced Concepts Team - European Space Agency,
2 Robotics Innovation Center - German Research Center for Artificial Intelligence

ABSTRACT

Optimal trajectories for spacecraft guidance, be it during or-
bital transfers or landing sequences are often pre-computed
on ground and used as nominal desired solutions later tracked
by a secondary control system. Linearization of the dynamics
around such nominal profiles allows to cancel the error during
the actual navigation phase when the trajectory is executed.
In this study, instead, we assess the possibility of hav-
ing the optimal guidance profile be represented on-board by a
deep artificial neural network trained, using supervised learn-
ing, to represent the optimal control structure. We show how
the deep network is able to learn the structure of the optimal
state-feedback outside of the training data and with great pre-
cision. We apply our method to different interesting optimal
control problems, a multicopter time and power optimal pin-
point landing control problem and two different mass optimal
spacecraft landing problems. In all cases, the deep network is
able to safely learn the optimal state-feedback, also outside of
the training data, making it a viable candidate for the imple-
mentation of a reactive real-time optimal control architecture.

Index Terms— real-time landing, optimal control, neural
networks, deep neural networks

1. INTRODUCTION

Optimal control for spacecraft landing typically requires ex-
pensive computations which make it infeasible for on-board
real-time applications. For this reason, although an optimal
reactive controller is desirable, current solutions often con-
sider a precomputed optimal profile with an additional control
system that corrects for deviations during descent [1].

In the past, artificial neural networks (ANN) have been
frequently proposed as an efficient way to compute optimal
control in different domains. Due to the decreasing cost of
computational resources and the latest advances in research
to train neural networks with many hidden layers [2] we can
see a renewed interest in the field, and in particular in deep
neural networks (DNN), in the context of optimal control.

While the representation capabilities of DNNs makes
them particularly appropriate for perception related tasks
such as image and speech recognition, it has been more re-
cently pointed out that control problems also benefit from

these models [3, 4]. However, work in this direction is
mostly limited to discrete-time problems and investigated the
implications on dynamic programming tasks. Instead, the
use of artificial neural networks for the optimal control of
continuous time, non-linear systems received less attention.
Successful applications have so far been limited to simple
domains (e.g., linear systems often appearing in case studies)
or to unbounded control [5, 6, 7]. As a consequence, their
possible use in robotics and engineering is rather restricted.
Contributions to the solution of both the Hamilton-Jacobi-
Belmann (HJB) equations and the two point boundary value
problem resulting from Pontryagin’s optimal control theory
also showed possible uses of ANNSs in this context [8]. On
the one hand, several methods were proposed for the ap-
proximation of the value function v(¢,x) by means of ANN
architectures [9, 10, 7]. On the other hand, ANNs have been
proposed and studied to provide a trial solution to the states,
the co-states and to the controls so that their weights can be
trained to make sure the assembled trial Hamiltonian respects
Pontryagin’s conditions [5]. Clearly, in this last case, the
networks have to be retrained for each initial condition. More
recently, a deep neural network, in the form of a stacked
auto-encoder was shown [11] to be able to learn an accu-
rate temporal profile of the optimal control and state in a
point-to-point reach of a continuous time, non-linear limb
model.

In this paper we successfully use DNNSs to represent the
solution to the Hamilton-Jacobi-Belmann policy equation for
sevral deterministic, non-linear, continuous time systems.
Our work shows that trained DNNs are suitable to achieve
real-time optimal control capabilities in complex tasks in the
domain of optimal landing, providing the spacecraft with a
reactive control system able to safely achieve its goals.

2. BACKGROUND

We consider deterministic systems defined by the dynamics
x(t) = f(x(t),u(t)), where x(t) : R — R™ and u(t) : R —
U C R™=. We address the fundamental problem of finding an
admissible control policy u(t) able to steer the system from
any xo = x(0) to some target goal in a subset S C R"=. At
t ¢ the system will be in its final state x; = x(t¢) € S having

minimized the following cost function:

J(x(),u() = / " Lx(t), u(t))dt + h(x(ty)
The value function, defined as:

v(x) = muinJ(x(-),u(~)) (1)
represents the minimal cost to reach the goal, starting from
x. Equivalently, the value function can be introduced as the
solution to the partial differential equation:

min {L(x,u) + f(x,u) - Vu(x)} =0)

subject to the boundary conditions v(x ;) = h(x(ty)), Vxs €
S. The optimal control policy is then:

u*(x) = argmin, {£(x,u) + f(x,u) - Vo(x)} (3)

Equations 2 and 3 are the Hamilton-Jacobi-Bellman (HJB)
equations for the optimal control problem here considered.
They are a set of extremely challenging partial differential
equations (PDEs) whose solution, pursued in the “viscosity”
sense, is the solution to the original optimal control problem
[12]. The HJB equations show the existence of an optimal
state-feedback u*(x) and provide a way to compute it once
the value function is known. Numerical approaches to solv-
ing HIB equation, thus, often rely on parametric approxima-
tions of the value function, e.g. using the Galerkin method
[13], which have also included ANNSs in the past [10]. Un-
like in previous work, we use deep neural networks (DNN5s)
to learn directly the optimal state-feedback u*(x) thus ob-
taining, indirectly, also a representation of the value function
v(x) = J(x*,u*), while avoiding to make use of the network
gradients when converting from value function to the optimal
policy. The DNN weights are trained using supervised learn-
ing on precomputed values of the optimal state-feedback for
a set of initial states. Eventually, the trained DNN represents
directly the optimal state-feedback and can be thus used, for
example, in a non-linear model predictive control architecture
[14] to achieve real-time optimal control capabilities.

3. OPTIMAL CONTROL PROBLEMS

Three different domains of increasing complexity and dimen-
sion are considered: the pinpoint landing of a multicopter
and the landing for two different models of spacecraft. Ad-
ditionally, we consider different cost functions, resulting in
different types of control profiles, i.e. smooth, saturated and
bang-bang. In each problem we introduce an initialization
area A C R™=: only initial conditions in .4 will be consid-
ered for the purpose of the training data generation.

3.1. Pinpoint landing (multicopter model)

The first domain we consider is the multicopter pinpoint
landing (n, = 5, n, = 2). The state is described by
x = [x,2,0,v;,v.] and the system dynamics by the fol-
lowing ODEs [15].

T =, Uy = uq sin(0)
Z =, Uy = uy cos(f) — g 4)
0= U9

We use a multicopter mass of m = 1 [kg] and g = 9.81
[m/s%]. The two control actions are the thrust u; € [0, 20]
[N], and the pitch rate ug € [—2,2] [rad/s]. The goal is to
reach the landing position x5 = 0, zy = 0.1, v,y = 0, v,y =
—0.1, ; = 0. The initialization area A is zo € [—5, 5] [m],
2o € [5,20] [m], vy € [—1,1] [m/s], v, € [—1,1] [m/s],
b0 € [—75, 5] [rad].

Two different cost functions are studied: quadratic con-
trol, where we seek to minimize the power consumption .J, =

[37 (1u? + azuf)dt with g = as = 1, and time J; = t;.

3.2. Landing (spacecraft models)

The other two domains correspond to spacecraft landing un-
der a uniform gravity field. Two mass-varying systems are
considered, the first one controlled by a thruster and a mo-
mentum exchange wheel (spacecraft model 1) with (n, = 6,
n, = 2) and the second one by one main thruster and two
lateral engines for pitch control (spacecraft model 2) with
(ng =7, n, = 3) [14].

The state in the case of the spacecraft model 1 is x =
[, vz, 2,v,, 0, m] and the system is described by the follow-
ing set of ODE:s.

T = v, Uy = ug sin(f)/m
i=v, 0, = ug cos(8)/m — gm 5)
0 = ug m = —u1/(Isp- go)

We consider the Moon gravity g = 1.62 [m/s?] and a main
engine with specific impulse I, = 311 [s]. The controls
are the thrust u; € [0,45760] [N] and the pitch rate us €
[—0.0698, 0.0698] [rad/s].

For model 2, the state is x = [z, vy, 2, v, 0, vg, m] and,
similarly to the previous one, the system is described by the
following ODEs.

. Uy = (u1 + ug + usz) sin(f)/m

T =y .

. 0, = (u1 + u2 + ug) cos(f)/m — g
Z=u, . (6)
STV i - ua)jmiR

m = —(uy 4+ uz +us)/(Isp - go)

In this case, instead of the pitch range we control two lat-
eral thrusters us,uz € [0,880] [N] separated by a distance
R =3[m].

In both cases the target is: zy = 10 [m], vy = 0 [m/s],
v,y = —0.1 [m/s]. No target is defined for = as we consider
a free landing scenario, hence the control action does not de-
pend on z. The initialization area A is: zg € [500,2000]
[m], mo € [8000,12000] [kgl, vzo € [—100,100] [m/s],
020 € [—30,10] [m/s] and fy € [— 5, 5] [rad].

We study the minimum mass problem, the cost function
being J,,, = Lif u1/(Isp-g) = my — mo. In the case of
model 1, considering that the optimal action us is not well
defined when ©; = 0 (multiple equivalent actions exist), we
add the term au? thus minimizing the cost function J!, =
Im + Lif a(ud)dt with o = 10.

The optimal control solutions of these three domains rep-
resent different classes of control profiles. The quadratic con-
trol problems result in continuous functions saturated at their
bounds. The time-optimal and mass-optimal cost functions,
instead, result in discontinuous bang-off-bang control struc-
tures for the thrust. In the case of model 1, an added com-
plexity comes from the change in behaviour of the pitch con-
trol during the thrust on and off phases: constant until the
switching point (the term f;f a(u3)dt is active) and smooth
and continuous afterwards. In the case of model 2 the three
thrusters (main and laterals) have a bang-off-bang structure in
theory. In practice we will discuss how in our data some noise
was introduced by the use of a direct method, which accounts
for some performance loss in this most complex case.

3.3. Training data generation

For each of the problems described above we generate a
dataset containing pairs (x*, u*), where x* is a state and u*
is the corresponding optimal action. The dataset is generated
solving the non-linear programming problem (NLP) resulting
from using the Hermite-Simpson transcription method [16],
a direct method to tackle optimal control problems. The solu-
tion is provided by a sequential quadratic programming NLP
solver, namely SNOPT [17].

For each of the considered problems we generate 150, 000
different trajectories starting from a point randomly sampled
from the initialization area .A. Of each trajectory we store 60
(multicopter) or 100 (spacecraft) state-control pairs, resulting
in 9,000, 000-15, 000, 000 training samples. We use 90% of
the trajectories to train the model while the rest is used for
validation.

In the landing cases, due to known problems caused by the
use of the direct method in connection with saturated controls
(i.e. bang-bang), we observe small chattering effects that have
a negative impact on the learning process. We address this
problem by adding a regularization term to the objective func-
tion when computing the NLP solution. For the time optimal
quadrotor and the spacecraft model 1, the added term corre-
sponds to 3J,, where Jj, is the quadratic power goal function.
If 5 is chosen sufficiently small, the effect of this term on the
final value of J(x(-)) is negligible, but helps the sequential

quadratic programming solver to converge towards a solution
without chattering. We use a; = as = 1,5 = 0.001 for
the multicopter time-optimal problem and a; = 1, as = 0,
= 10719 for the spacecraft mass-optimal problem.

Given the complexity of the spacecraft model 2, regular-
ization as described is not effective and instead we use the
more aggressive term 5>, >, o(u;(t + 1) — u;(t)) with
[3=107°, o =[0.02,1, 1], where the different o; values are
used because of the different ranges of the main thrust and the
lateral ones. This removes most of the chattering effects, but
some of them still appear, and thus we remove those trajecto-
ries that switch from one extreme value to the other one more
than five times. Note that generating the trajectories using an
indirect method, instead of a direct one, would remove the
need of these regularization terms that may interfere with the
main objectives, what is currently being researched.

4. STATE-FEEDBACK APPROXIMATION

The data generated as described above is used to train the
feed-forward neural networks. Given that each model has sev-
eral control variables, we train separate networks for each one
of them (i.e. thrust or pitch) .

4.1. DNN architecture

We consider both models with only one (shallow) and sev-
eral hidden layers (deep). The selection of the non-linearities
used in the hidden units has been identified as one of the most
important factors of DNN architectures [18]. We compare
the classical sigmoid units to rectified linear units (ReLUs),
which correspond to the activation function max (0, x). It has
been pointed out that ReLu units have two main benefits when
compared to sigmoid functions: they do not saturate, which
avoids the units to stop learning after reaching a point (the
vanishing gradient problem), and the output of the units is
frequently zero, which forces a sparse representation that is
often addressed as a way of regularization that improves the
generalization capabilities of the model [19]. The sigmoid
function used for the comparison is the hyperbolic tangent,
selected based on their convergence behaviour compared to
the standard logistic function [20]. We consistently obtain
higher performance with ReLus (see Table 1) and thus they
are used in the hidden units of our DNNS.

The output units are tanh units, which always provided a
better result when we compare them to linear units. All the in-
puts and outputs are normalized by subtracting the mean and
dividing by the standard deviation. The normalized outputs
are then further scaled to the range [-1,1] to make sure they
can all be represented by the output of the tanh function.

Architecture Train (u;) Val. (u1)
tanh - tanh 955.53 963.61
5 | ReLu - tanh 918.90 936.21
ReLu - linear 973.20 978.35
tanh - tanh 0.00283 0.00284
& | ReLu - tanh 0.00250 0.00252
ReLu - linear 0.00257 0.00259

Table 1. Performance comparison for different non-
linearities (hidden - output) on the spacecraft model 1 trained
for mass optimal landing.

4.2, Training

All networks are trained until convergence with stochastic
gradient descent (SGD) and a batch size of 8. After every
epoch the loss error is computed for the evaluation set and the
learning process is stopped if there are more than 3 epochs
with no increments affecting, at least, the third significant
digit. We use Xavier’s initialization method [21] to randomly
set the initial weights. Although it was designed to improve
the learning process for logistic units, it has been shown that
this idea can also be beneficial for networks with ReLu units
[22]. In our case, each weight w; is drawn from a uniform dis-

. . . o 12 .)
tribution U[—a, a], with a = , | o ran » being fanin, fangy

the number of units of the previous and following layers.
The training process seeks to minimize the squared loss
function C' = Zf:o (N (x1) — y(x3))? for the neural net-
work output \V'(x;) and the optimal action y(x;). The weights
w; are updated with a learning rate = 0.001 and momentum

with p = 0.9 [23]:

e

/ /
w; — wW; = Wi + v;

v = U =

4.3. DNN driven trajectories

Once trained, the DNNs can be used to predict the control
given any state x. This allows us to also compute the full
trajectory by numerical integration of the system dynamics

x = f(x,u*) = f(x, NV (x)):

X(t):/0 f(x, N (x))ds

The integration is stopped when the goal state is reached
within some tolerance or a failure is detected (i.e., too much
time has elapsed or a crash z < 0 is detected). For the multi-
copter the tolerance to the goal position is set to 0.1 [m] and
for the final velocity to 0.1 [m/s]. For the spacecraft landing
case, a velocity tolerance of 1 [m/s] has to be achieved after
passing the 10 [m] goal without crashing.

—— Optimal control
—— (D)NN control

o (D)NN predictions

o
o

u2 (rad/s)

o©
S)

u2 (rad/s)

20
t(s)

Fig. 1. us control during a challenging mass optimal space-
craft (model 1) landing. The optimal control, the (D)NN pre-
dictions for each state along the optimal trajectory and the full
trajectory driven by the (D)NN are shown. Top: deep network
(4 hidden layers, 64 units, 12992 parameters). Bottom: shal-
low network (1 hidden layer, 2048 units, 16384 parameters).
The deep network achieves safe landing conditions, while the
shallow network results in a catastrophic failure.

5. RESULTS

We are interested both in determining whether the DNNs are
able to reach the goal position and in computing the cost func-
tion along the DNN trajectory.

The mean absolute error (MAE) is used to evaluate the
difference between the optimal actions and the network pre-
dictions. Although this measure is useful for comparison pur-
poses, it is not a way to evaluate how well the required task is
accomplished. Small errors are propagated through the whole
trajectory and may result in sub-optimal trajectories as well as
in catastrophic failures. The full DNN-driven trajectories are
thus compared to the optimal ones. Figure 1 shows a compar-
ison between a deep network and a shallow one in terms of
both the predicted controls and (D)NN-driven trajectories.

To study the multicopter and spacecraft domains, 100 ran-

Multicopter - Power

Training area Outside (Sm) Outside (10m) Time
0.47% (100%) 0.73% (100%) 2.28% / (64%) 9.75%
Multicopter - Time

Training area QOutside (5Sm) Outside (10m) Power

0.41% (100%) 2.12% (70%) - 14.92%
Spacecraft model 1 - Mass

Training area QOutside (1Ikm) Outside (2km) Time

1.50% (100%) 1.07% (100%) 1.83% (53%) 4.46%
Spacecraft model 2 - Mass

Training area Outside (1km) Outside (2km)
1.44% (70%/25%) 1.33% (54%/24%) - (25%/1%)%

Table 2. Error with respect to the optimal value function and
success rate. The values are shown for initial conditions from
inside and outside of the training area and the results corre-
sponding to a trajectory optimized for a different objective.
For spacecraft model 2, the two values in are the success rate
and the percentage of trajectories (classified as unsuccessful)
that did not crash but kept ascending and descending above
the goal not reaching it.

dom initial positions are generated in A and the DNN driven
trajectory is simulated. Table 2 summarizes the results. The
multicopter and the spacecraft with the momentum exchange
wheel achieve a 100% success rate with high accuracy and
precision when they are initialized within .4. In the same ta-
ble we include the error for DNNs trained on a different ob-
jective, showing that the errors are, as expected, significantly
higher. Examples of the optimal control profile vs. the control
along a DNN-driven trajectory are shown in Figure 2.

In the case of the spacecraft model 2, the accuracy is con-
siderably lower although we can see how the structure of the
control has been learned (Figure 3). It is also possible to
notice how the optimal profiles do not correspond to the ex-
pected bang-bang control due to the aggressive regularization
that had to be used in this case. Even in this case, the neural
network is still replicating the behaviour of the training data,
but small deviations, in particular in the lateral thrusters may
result in catastrophic failures. Improving the data used for
training will likely lead to a quality similar to the other mod-
els. All the state and control variables duing a full trajectory
are shown in Figure 4.

5.1. Generalization

In most cases, high success rates from outside of the training
data are obtained without a major impact on performances as

shown in table 2. In the case of the power optimal multi-
copter, if the trajectories are initialized from an extension of
A of 5 [m] both in z and z, the DNN still achieves 100%
of safe landings with minor deviations from the optimal cost
(0.74%). The success rate remains high (84%) in the case
of an extension of 10 [m]. For time optimal trajectories, the
success rate outside of A is lower (70%) mainly due to the
terminal velocity v, violating the set tolerance. In the space-
craft (model 1) case, safe landings are achieved consistently
from initial positions up to 1 [km] higher than those consid-
ered in A and more than 50% of safe landings are achieved
for an extension of 2 [km].

If the networks have learned an approximation to the so-
lution of the HJB equations, we would expect them to work in
conditions that are not considered in the training data. Other
strong indications suggest that this is indeed the case.

In Figure 2 we see that, if the simulation is not stopped
after reaching the goal position, the multicopter or spacecraft
starts hovering close to the goal with zero velocity and the
necessary thrust to compensate the gravitational force. For
the case of the multicopter it is remarkable that the thrust pre-
dicted by the network is ~ 9.81 [N] also in those cases where
such a value is not present in the training data. The spacecraft
model 1, after reaching its goal, does not hover with preci-
sion, but it still shows a similar behaviour and it is possible to
observe that the thrust (us) constantly decreases, which can
be interpreted as an attempt to compensate for the mass re-
duction due to fuel consumption.

In addition to Table 2, Figure 5 shows how both the mul-
ticopter and the spacecraft reach the goal position from initial
states well outside of the bounds of the training area. This
generalization happens not only for meaningful initial posi-
tions but also for points lower than the landing position, which
requires to move upwards, a behaviour not presented during
training.

5.2. Importance of depth

Table 3 shows how shallow networks with only two layers
(one hidden and one output layer) are not able to approx-
imate the state-feedback control as accurately as deep net-
works. Deep networks always outperform shallow networks
with the same number of parameters. In the table we include
an example for each one of the domains and we offer a more
detailed comparison over us for the spacecraft model 1, given
that it has the most representative control profile. It is possi-
ble to see how, after some point, doubling the number of units
in a shallow network does not produce significant improve-
ments. In this case the performance is worse than deeper net-
works with a much lower number of parameters, which sug-
gests that, given the data and the training methods used, it is
not possible to learn a precise representation of the function
with shallow networks.

—— Optimal control —— DNN control

20 30
40000
20
= = P
P4 P4 =z
£ £ £
— 10 - —
=1 =1 > 20000
10 r
0 4
0 0 r
0 1 2 3 0 1 2 3 0 20 40 60 80
2 4
2 o 2 z 0%
K4 K K
3 3 3
© [<
= 0 L = =
N N N
S S S
0 L
0.00 L
-2 -2
0 3 0 1 2 3 0 20 40 60 80

2
t(s) t(s) t(s)

Fig. 2. Control profiles along trajectories driven by a DNN for the multicopter power (left) and time (center) optimal problems
and for the spacecraft mass problem (right). After reaching the final goal, the trajectory computed by the network starts a
hovering phase. For the multicopter cases this requires a constant thrust of 9.8 [N], for the spacecraft model the thrust decreases
over time as the total mass decreases.

—— Optimal control —— DNN predictions
50000 50000
]]
z
El
0 0
1000 1000 -
z
=
=}
0 0 I L L] Q
1000
1L} . I 1 f_
z
I
=}
0 _J

Fig. 3. Optimal control and DNN predictions for the states of several optimal trajectories, not included in the training set, for
the spacecraft model 2.

X (m)

—2000

6 (rad)

>

1.0

0.0

10000

m (kg)

9600

(M)

%

Fig. 4. All state and control (in gray) variables of the space-
craft model 2. The DNN-drive trajectory replicates the opti-

800

= Optimal control

/

0 20 40 6

S

/
<

o

20 40 6

S

©

20 40 6

S

o

20 40 6

=

o

20 40 60

t(s)

Vi (m/s)

Ve(rad/s)

o
=
S

=

40000

w(N)

%

800

us(N)

.

mal trajectory with a high accuracy.

—— DNN control

0 20 40 6

s

0 20 40 6

S

o

20 40 6

[s

o

20 40 6

S

o
o

20 40 6

t(s)

Multicopter - Power

Layers Units #params Train Val.
2 1,104 8,832 0.0897 0.0902
5 4 64 8,832 0.0668 0.0672
5 64 17,216 0.0632 0.0637
2 1,104 8,832 0.0645 0.065
g 4 64 8,832 0.0429 0.0431
5 64 17,216 0.0416 0.0418
Multicopter - Time
\ Layers Units #params Train Val.
2 1,104 8,832 0.232 0.234
3 4 64 8,832 0.152 0.153
5 64 17,216 0.145 0.146
2 1,104 8,832 0.105 0.104
g 4 64 8,832 0.0852 0.0853
5 64 17,216 0.0786 0.0789
Spacecraft model 1 - Mass
Layers Units #params Train Val.
. 2 1,104 8,832 1243.78 1246.91-
3 4 64 8,832 936.98 946.76
5 64 17,216 930.71 938.16
2 256 2,048 0,00462 0,00460
2 1,104 8,834 0,00379 0,00379
2 2,048 16,384 0,00370 0,00371
3 64 4,672 0,00307 0,00307
g 3 128 17,536 0,00270 0,00272
3 256 67,840 0,00263 0,00264
4 64 8,832 0,00250 0,00252
4 128 34,048 0,00241 0,00242
5 64 12,992 0,00236 0,00237
Spacecraft model 2 - Mass
\ Layers Units #params Train Val.
2 1,104 8,832 115.40 114.52
3 4 64 8,832 8231 82.15
5 64 17,216 8545 85.70
2 1,104 8,832 8.46 8.43
g 4 64 8,832 6.56 6.52
5 64 17,216 6.20 6.19
2 1,104 8,832 16.07 16.13
g 4 64 8,832 1232 1243
5 64 17,216 11.84 1198

Table 3. Effect of the depth in networks trained to predict the
control variables of the multicopter and spacecraft models.

A Target position

—— Training trajectories

—— DNN trajectories

30 0.5

—~ 2000
£

y (m)
y (m)

-
N

-0.5

-10 10 -0.

x((;n)

7

-5 0 100

x(m) [v] (m/s)

Fig. 5. Trajectories computed by DNNs from initial points outside of the training area both for the power optimal multicopter
pin-point landing (left and center) and the mass optimal spacecraft landing (right).

5.3. Speed comparison

The DNN, compared to the original NLP solver, will only
provide an advantage if its processing time is lower. A com-
parison between the CPU times is included in table 4, where
it is possible to see that, even when we use a low number
of nodes in the NLP solver (resulting in sub-optimal results)
the networks are still up to 500 times faster. Although the
NLP solver computes the full trajectory, if we want a reactive
controller we will have to discard everything except the first
action, while the DNN only needs to compute one action at a
time.

Non linear programming (NLP) solver

Snodes 20 nodes 50 nodes
Qt 38.86ms 168.71 ms 594.87 ms
Qp 3260ms 22258 ms 1245.98 ms
S1 82.82ms 280.70ms 1830.57 ms
S2 7295ms 38644 ms 3488.82 ms

DNN (network for each variable)

1-1140
0.048 ms

4 - 64
0.056 ms

4-128
0.068 ms

4 -256
0.11 ms

Table 4. Time to compute the the control given the state. The
time of the NLP solver using 5, 20 and 50 nodes is computed
as the mean of 100 trajectories from random initial points. We
show the NLP solutions for the four models: multicopter with
power (Mp) and time (Mt) optimal control and the spacecraft
models 1 (S1) and 2 (S2). The networks (one with 2 lay-
ers and 1,140 units and three with 5 layers and 64, 128 and
256 units) are evaluated 100,000 times to compute the average
time. All times have been obtained with a Intel(R) Xeon(R)
E5-2687W @ 3.10GHz CPU.

6. CONCLUSIONS

We have shown that deep neural networks (DNN) can be
trained to learn the optimal state-feedback in a number of
continuous time, deterministic, non-linear systems of interest
in the aerospace domain and in particular in landing appli-
cations. The trained networks are not limited to predict the
optimal state-feedback from points within the subset of the
state space used during training, but are able to generalize
to points well outside the training data, suggesting that the
solution to Hamilton-Jacobi-Bellman (HJB) equations is the
underlying model being learned. The depth of the networks
has a great influence on the obtained results and we find
that shallow networks, while trying to approximate the opti-
mal state-feedback, are unable to learn its complex structure
satisfactorily.

Our work opens to the possibility to design real-time op-
timal control architectures for planetary landing using a DNN
to drive directly the state-action selection. With this respect
we show that the error introduced by the use of the trained
DNN, not only does not have a significant impact on the final
cost function achieved, but it is also safe in terms of avoiding
catastrophic failures.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

7. REFERENCES

Behcet Acikmese and Scott R Ploen, “Convex program-
ming approach to powered descent guidance for mars
landing,” Journal of Guidance, Control, and Dynamics,
vol. 30, no. 5, pp. 1353-1366, 2007.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton,
“Deep learning,” Nature, vol. 521, no. 7553, pp. 436—
444, May 2015, Insight.

Sergey Levine, “Exploring deep and recurrent ar-
chitectures for optimal control,” arXiv preprint
arXiv:1311.1761, 2013.

Tianhao Zhang, Gregory Kahn, Sergey Levine, and
Pieter Abbeel, “Learning deep control policies for
autonomous aerial vehicles with mpc-guided policy
search,” arXiv preprint arXiv:1509.06791, 2015.

Sohrab Effati and Morteza Pakdaman, “Optimal control
problem via neural networks,” Neural Computing and
Applications, vol. 23, no. 7-8, pp. 2093-2100, 2013.

Yang Xiong, Liu Derong, Wang Ding, and Ma Hong-
wen, “Constrained online optimal control for
continuous-time nonlinear systems using neuro-
dynamic programming,” in Control Conference (CCC),
2014 33rd Chinese. IEEE, 2014, pp. 8717-8722.

P.V. Medagam and F. Pourboghrat, “Optimal control of
nonlinear systems using rbf neural network and adaptive
extended kalman filter,” in American Control Confer-
ence, 2009. ACC °09., June 2009, pp. 355-360.

Emanuel Todorov, “Optimality principles in sensorimo-
tor control,” Nature neuroscience, vol. 7, no. 9, pp. 907-
915, 2004.

Frank L Lewis and M Abu-Khalaf, “A hamilton-jacobi
setup for constrained neural network control,” in Intel-
ligent Control. 2003 IEEE International Symposium on.
IEEE, 2003, pp. 1-15.

Y. Tassa and T. Erez, “Least squares solutions of the hjb
equation with neural network value-function approxi-
mators,” Neural Networks, IEEE Transactions on, vol.
18, no. 4, pp. 1031-1041, July 2007.

Max Berniker and Konrad P Kording, “Deep networks
for motor control functions,” Frontiers in computational
neuroscience, vol. 9, 2015.

Martino Bardi and Italo Capuzzo-Dolcetta, Opti-
mal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations, Springer Science & Business Me-
dia, 2008.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

Randal W Beard, George N Saridis, and John T Wen,
“Galerkin approximations of the generalized hamilton-
jacobi-bellman equation,” Automatica, vol. 33, no. 12,
pp- 2159-2177, 1997.

Dario Izzo and Guido de Croon, “Nonlinear model pre-
dictive control applied to vision-based spacecraft land-
ing,” in Proceedings of the EuroGNC 2013, 2nd CEAS
Specialist Conference on Guidance, Navigation & Con-
trol, Delft University of Technology, 2013, pp. 91-107.

Markus Hehn, Robin Ritz, and Raffaello DAndrea,
“Performance benchmarking of quadrotor systems us-
ing time-optimal control,” Autonomous Robots, vol. 33,
no. 1-2, pp. 69-88, 2012.

John T Betts, Practical methods for optimal control and
estimation using nonlinear programming, vol. 19, Siam,
2010.

Philip E Gill, Walter Murray, and Michael A Saunders,
“Snopt: An sqp algorithm for large-scale constrained
optimization,” SIAM review, vol. 47, no. 1, pp. 99-131,
2005.

Kevin Jarrett, Koray Kavukcuoglu, Marc’ Aurelio Ran-
zato, and Yann LeCun, “What is the best multi-stage ar-
chitecture for object recognition?,” in Computer Vision,
2009 IEEE 12th International Conference on. 1EEE,
2009, pp. 2146-2153.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio,
“Deep sparse rectifier neural networks,” in Interna-
tional Conference on Artificial Intelligence and Statis-
tics, 2011, pp. 315-323.

Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and
Klaus-Robert Miiller, Neural Networks: Tricks of the
Trade: Second Edition, chapter Efficient BackProp, pp.
9-48, Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

Xavier Glorot and Yoshua Bengio, “Understanding the
difficulty of training deep feedforward neural networks,”
in International conference on artificial intelligence and
statistics, 2010, pp. 249-256.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, 2015, pp. 1026-1034.

Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton, “On the importance of initialization and
momentum in deep learning,” in Proceedings of the 30th
international conference on machine learning (ICML-
13),2013, pp. 1139-1147.

