
DEVELOPMENT, VALIDATION AND TEST OF OPTICAL BASED ALGORITHMS FOR
AUTONOMOUS PLANETARY LANDING

Marco Ciarambino, Paolo Lunghi, Luca Losi, Michèle Lavagna

Politecnico di Milano
Department of Aerospace Science and Technology (DAER)

34, via La Masa, 20156, Milano, Italy

ABSTRACT

In this paper, a suite of tools and algorithms devoted to opti-
cal navigation for autonomous landing on planets and small
bodies, currently under development at PoliMi-DAER, is pre-
sented. An hazard detection system based on a single camera
and artificial neural networks selects the most suitable land-
ing site for the lander. Autonomous guidance on board com-
putes the trajectory to reach for the designated landing site,
taking into account the lander dynamics and path constraints.
The two systems are linked by vision-based navigation, which
reconstructs the relative spacecraft states with respect to the
ground, in particular by means of a camera through feature
tracking and other typical sensors, such as Inertial Measure-
ment Unit and altimeter. The ultimate goal is to create a
whole Adaptive Guidance, Navigation and Control chain for
autonomous landings. An experimental facility is currently
under construction at PoliMi premises to verify, validate and
test the aforementioned optical landing tools.

Index Terms— autonomous landing, optical navigation,
adaptive guidance, hazard detection, experimental facility

1. INTRODUCTION

In recent years, a renewed interest in space exploration has
induced investing a growing amount of human and financial
resources to provide next generation spacecraft with enhanced
autonomous navigation and landing capabilities. Complex
missions in which close approach to and landing on unco-
operative objects play a major role are being developed by
numerous space agencies: in particular, ESA is working to-
gether with ROSCOSMOS on a cooperative programme for
Mars, Phobos and Moon exploration: as our satellite is con-
cerned, Luna-Resurs Lander (Luna-27) mission planned for
2020 and the Luna 29, the Lunar Sample Return mission to
follow are involved, strongly focused on the South Pole land-
ing to collect icy volatiles located in a very precise region
of the huge Aitken crater. Part of the European contribution
for the Luna-27 mission is the PILOT (Precise and Intelli-
gent Landing using Onboard Technologies) subsystem, for
enhancing autonomous landing capabilities in terms of high

precision landing and hazard detection and avoidance func-
tionalities. An analogous collaboration has been established
for the ExoMars programme, which include a lander deliv-
ery first, followed by a rover release on Mars, to be launched
in 2016 and 2018 respectively and for the exploration of the
small Mars moon with the Phootprint Mission, a Phobos Sam-
ple Return mission planned for the Twenties. Since 2006,
technologies for autonomous landing are studied by NASA
in the frame of the Autonomous Landing Hazard Avoidance
Technology (ALHAT) program [1]. ALHAT technologies,
tested at the end of 2014 in free flight on the Morpheus lan-
der demonstrator, are going to be integrated in future explo-
ration missions. Recently, CNSA has performed its first lunar
landing with a lander/rover system with the Chang’e 3 mis-
sion (with missions 4 and 5 already scheduled), while ISRO
is planning to put a lander carrying a rover on the lunar surface
by the early 2018 in the Chandrayaan 2 mission [2]. Among
the various technologies under study, vision-based systems
represent one of the most promising tools to provide the re-
quired level of accuracy, unattainable by classical technolo-
gies. In this paper, the research carried out at the Department
of Aerospace Science and Technology (DAER) of Politec-
nico di Milano about algorithms and tools dedicated to au-
tonomous navigation and hazard detection for landing is pre-
sented. The functional architecture for an optical autonomous
landing system is shown Fig. 1: the navigation subsystem re-
constructs the dynamic state of the lander through the camera
and other sensors such as IMU and altimeter. Through an in-
put frame of the landing region provided by the navigation
camera, the hazard detector calculates the hazard map, ex-
ploited by landing site selection routine to identify the best
landing site. The adaptive guidance subsystem uses all these
informations to compute a feasible fuel-optimal trajectory,
taking into account the constraints imposed by the available
control authority.
To test and validate these algorithms, an experimental facility
is under construction at PoliMi premises, featuring a robotic
arm to simulate lander dynamics, a planetary surface mock-up
and an illumination system.



Fig. 1. Functional scheme of a vision-based autonomous
landing system. Red boxes denote subsystems presented in
this paper.

2. HAZARD DETECTION SYSTEM

The hazard detector in development at PoliMi - DAER fea-
tures Artificial Neural Networks (ANN). Information ex-
tracted from a single-channel image provided by a monocular
navigation camera are processed by ANNs to generate a haz-
ard map of the landing area, exploited by the site selection
routine to compute the new target. This design choice al-
lows computational efficiency for real-time operations and
cost-effectiveness.

2.1. System architecture

The hazard detection system architecture is shown in Fig. 2.
The retargeting process is divided in 4 different subphases:

Input and preprocessing. It has been considered as input a
8-bit grey-scale frame with a resolution of 1024×1024 pixels.
Since during the hazard detection maneuver the spacecraft is
in a near vertical attitude, small deviations from nadir point-
ing are corrected by applying a perspective transformation.

Image processing and input assembly. The input image
is analysed and different indices are extracted. This process
computes low level information from the image in order to
reduce the data space in which the network should detect the
morphological features of the terrain. The same image pro-
cessing techniques are computed at different scales to allow
the ANN to grasp relative distances and depths [3]. Three
scales have been used for this work, depending on the differ-
ent mobile window or image pyramid level utilised: small,
medium, large, that downsample the image respectively to
256×256, 128×128, 64×64 pixels. The final hazard map
dimension coincides with the small scale sample. Specifi-
cally, the indices extracted from the image can be divided
in window-based and global indices. First category is rep-
resented by mean µ and standard deviation σ of the current

mobile window pixels. They are defined as:

µ =

∑N
i=1 Ii
N

, σ =

√∑N
i=1(Ii − µ)2
N − 1

(1)

where Ii corresponds to the intensity of the i-th pixel, N is
the number of pixels inside the considered image window.
Global indices image gradient are instead computed through
custom kernels convolution across the whole image and then
downsampled to match the dimensions of the window-based
indices. The image gradient Grad is calculated through an
expanded 5×5 Prewitt filter [4] for vertical and horizontal di-
rections. The square root of the sum of the square of every di-
rectional gradient yields the total image gradient magnitude.
The Laplacian of Gaussian LoG combines a Gaussian filter
with the Laplacian operator, and it is often used as an edge
detector in images [5]. It is defined analytically as:

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 , (2)

where x, y are the image coordinates and σ the standard devi-
ation. In this work it has been implemented as a 5×5 discrete
linear kernel to convolve the image with.
Over these indices, also the Sun elevation angle above the
horizon is assembled in the total input matrix, allowing the
network to understand features at different illumination con-
ditions.
Summarising, 13 indices are fed into the network to compute
a single pixel of the hazard map: µ, σ, grad, LoG for three
different image scales, Sun elevation angle.

Hazard map computation. The assembled input matrix is
processed by a cascade neural network. In this kind of struc-
ture, each neuron is assembled in sequential hidden layers and
has two inputs: the original input matrix plus the previous
hidden layers outputs. During the training, the network is pro-
gressively increased adding one hidden layer at once, leading
to a near-optimal configuration [6].
The output of the network represents a pixel of the hazard
map, whose value spans from 0 (completely safe), to 1 (com-
pletely unsafe). To relate nearby points, a light blur filter is
applied to the output of the neural network.

Target landing site selection. As the hazard map is avail-
able, a new target landing site is computed. All the sites that
do not respect minimum requirements on safety or dimen-
sion (taking into account the lander footprint, margined with
the expected dispersion at touchdown) are immediately dis-
carded. The remaining candidate landing sites are then ranked
according to three criteria: minimum hazard index, maximum
landing area, minimum distance from the nominal landing
site (to maximise the probability to find a landing site actu-
ally reachable with the divert capabilities of the lander). The
influence of these parameters can be adjusted with three cor-
responding weights to satisfy user needs or to maximise the
performances.



ANN

Indices Extraction Haz. Map Computation Target Ranking & Selection

P
re

-p
ro

c
e
s
s
in

g

Fig. 2. Hazard detector working flow. After acquisition, image features are extracted and fed in the artificial neural network to
estimate the hazard map. Landing site is then computed taking into account multiple parameters.

2.2. Lunar dataset

High resolution lunar DEMs (5-2 m/point) from LROC1 have
been used as the base to craft an artificial images dataset.
Since real images usually lack of metadata like camera model,
altitude and attitude of the lander and does not include a de-
tailed 3D terrain model, we opted to generate the artificial im-
ages dataset. At first, resolution has been increased up to 0.3
m/point adding small craters, boulders and fractal noise [7, 8,
9]. The camera frame is then rendered through the POV-ray
open source software2 with realistic illumination conditions
assuming a pinhole camera with 60◦ angle of view.
Ground truth is computed directly from DEM data: for each
elevation point, a circular window of size equal to the lander
footprint is considered: the mean plane of the DEM points
in the window is calculated by least squares approximation.
Computing mean plane inclination and the difference between
the maximum and minimum deviation of the window points
from the mean plane, the slope and the roughness of the ter-
rain are respectively computed. Converting the two in camera
coordinates, it is possible to render the slope and the rough-
ness ground truth maps. Each point is considered safe if the
local slope or the local roughness do not exceed the values
imposed by the user. Also a shadow map rendering is per-
formed applying a threshold of camera image.
The maximum hazard index of 1 is assigned to pixels in shad-
ows, meaning completely unsafe. An index of 0.33 is assigned
to a pixel whose slope or roughness is out of the limits im-
posed, 0.66 if both are exceeded, 0 if the pixel safe to land on.
From the 1024×1024 pixels original resolution, the ground
truth is downsampled through Gaussian pyramids to 256×256
pixels.

2.3. Performances

Performances are assessed comparing the landing sites found
by the hazard detector onto the produced hazard map with

1Courtesy of NASA and Arizona State University. URL:
http://wms.lroc.asu.edu/lroc/rdr product select, last visit on: March 7,
2016.

2Persistence of Vision Raytracer (Version 3.7). Retrieved from
http://www.povray.org/download/

(a) Rendered lunar surface (b) Ground truth

Fig. 3. Example of lunar surface rendering from augmented
LROC DEMs and corresponding ground truth hazard map.
Blue are safe areas (0), red completely unsafe in shadow areas
(0).

the sites found onto the ground truth. The test set consists in
8 images of four lunar regions rendered at two different Sun
inclination, 15◦ and 80◦. A lander of 3 meters of diameter in
footprint and a navigation error of 15 meters at 3σ has been
considered. For the ground truth hazard calculations, terrain
roughness over 0.5 meters and slopes over 15◦ are considered
unsafe.

(a) Computed hazard map (b) Landing site found

Fig. 4. Computed hazard map and landing site found.

Computed hazard map and landing site found relative to
the rendering in Fig. 3 are shown in Fig.4. The terrain fea-



tures are correctly interpreted by the network.
To assess the performances, landing sites found on the com-
puted hazard map are compared to the ones found on the
ground truth. In particular, a landing site can be classified
as True Positive (TP), meaning a correctly identified landing
site, a False Positive (FP) an actually unsafe site considered
erroneously safe, a False Negative (FN), that is an actually
safe site considered erroneously unsafe, or a True Negative
(TN), a correctly identified unsafe landing site.
Defining the Safety Ratio rS as the fraction of true positives
with respect to the total number of landing sites found:

rs =
TP

TP + FP
, (3)

and defining the Correctness Ratio rC as the fraction of cor-
rectly identified sites (TP) with respect to the true safe landing
site in the image:

rC =
TP

TP + FN
(4)

the probability to select an unsafe site is minimized maximiz-
ing rS , whereas as rC increases, the available landing area
increases. The whole performance can be assessed with a
unique index J expressed as:

J = r5SR
1/5
C (5)

where the two exponents privilege landing sites safety dur-
ing J maximization. Hazard map safety thresholds between
0.04 and 0.3 for the landing sites computations in the hazard
map have been tested. Maximum J is recorded for a safety
threshold of 0.17. As outlined in Section 2.1, three weights
are adjustable to have a greater flexibility in the landing sites
selection. The greatest coefficient of 0.6 has been selected for
the landing site area, to increase robustness to navigation er-
rors. A value of 0.3 is given to the distance with respect to the
nominal landing site and the lowest of 0.1 is given to the mean
hazard index of the site, because the system takes already into
account a very safe threshold of 0.17.
With these parameters, the system:

• always selects a True Positive as Target Landing site;

• the worst case in ranking of the first False Positive is
position 39, with an average on the test dataset of 695;

• an average Safety Ratio of 0.9649, meaning that over
96% of the landing sites found are actually safe.

For what concerns computational performances, the hazard
detection system software is coded in C++ for its ”flight” ver-
sion. Profiling has been executed with three different tools:
GperfTools, sampling profiler capable to reach up to 250 Hz;
the high resolution clock of the standard C++ chrono library;
the GNU time command. The hazard detector ran forced on
a single thread of the processor for 1000 times to mediate
the effects of the operative system overheads on the CPU.

All tests have been performed on a AMD A10-7700K APU,
running 64 bit Ubuntu 14.04 GNU/Linux operative system.
Gperftools hit 108 148 times at 250 Hz for a total time of
432.59 s, while CPU time resulted 432.67 s. The conceptual
difference in the working method of the sampling Google pro-
filer and the two CPU time profilers allow to assume a decent
reliability in the computational times. As expected, the heav-
iest routine in the algorithm resulted the indices extraction,
spanning almost 50% or the total hazard detection software
runtime. However, due to recent improvements in space qual-
ified hardware such as Field Programmable Gate Arrays [10,
11], it will be possible to split in parallel threads the heavi-
est parts of the algorithm –indices extraction in primis– with
dramatic improvements expected.

3. ADAPTIVE GUIDANCE

Once a safe landing site is selected, the system must com-
pute a new feasible trajectory toward the new target. A fuel-
optimum criterion is followed, in order to maximize the at-
tainable landing area in subsequent target updates, that may
be required as soon as smaller terrain features become observ-
able, with the decreasing of the altitude. Here the structure of
the algorithm is summarized, and some numerical results are
presented. For a detailed description, see [12].

A planetary landing is characterized by fast dynamics.
The expected time of flight of the approach phase in which
HDA tasks take place is in the order of 1min, and the mass is
supposed to significantly change during the maneuver. In this
case, distances, for both downrange and altitude, are small
compared to the planet’s radius; thus, the assumption of a
constant gravity field with flat ground is appropriate. Fur-
thermore, aerodynamic forces are neglected: the effects of the
possible presence of atmosphere (especially for low densities,
as in the case of Mars) could be omitted due to the relative
low velocity (on the order of 100m s−1) and the associated
forces can be treated as disturbances [13]. The translational
dynamics of the spacecraft are expressed in a ground refer-
ence system as:

ṙ = v v̇ =
T

m
+ g ṁ = − T

Ispg0
(6)

where r = [x, y, z]T , x is the altitude, y is the downrange
direction and z is the cross-range; g is the constant accelera-
tion of gravity vector of the planet, Isp the specific impulse of
the main engine, and g0 the standard gravity acceleration on
Earth. The thrust net magnitude is indicated with T = ‖T‖.

The thrust vector acts as the control variable. The mass
equation is linked to the control acceleration by the thrust-to-
mass ratio P:

P = T/m = v̇ − g (7)

Then, the mass equation in system (6) can be rewritten as a



first order linear ordinary differential equation:

ṁ = − P

Ispg0
m (8)

where P = ‖P‖.
The states r0, v0 and m0 at the initial time t0 are sup-

posed to be known. At the end of the maneuver, at time tf, the
final states rf and vf are constrained to assume fixed values.
Then, the optimal guidance problem is to find a control pro-
file T(t) to bring the system from the initial to the target final
states, compatibly with all the constraints imposed by the ac-
tual system architecture. For sake of simplicity is considered
t0 = 0.

The main thruster is assumed to be tightly connected to
the spacecraft body. Then, the thrust vector depends only on
the attitude of the spacecraft, expressed by the vector of Eu-
ler’s angle e and on the thrust magnitude T . At the begin-
ning of the maneuver, the attitude is assumed to be known.
Then, the initial acceleration is function only of the initial
thrust magnitude. Moreover, at the end of the maneuver, the
lander’s is required to be aligned with the local vertical on
the Target Landing Site. In case of flat surface, this condition
reduces to impose null horizontal acceleration. A total of 17
boundary constraints are then available for position, velocity
and acceleration components: 6 on initial states, 3 on initial
acceleration (function of initial thrust magnitude), 6 on tar-
get final states and 2 on the final acceleration due to the final
attitude requirements

r(0) = r0 r(tf) = rf

v(0) = v0 v(tf) = vf (9)

v̇(0) = f(T0) v̇(tf) = [free, 0, 0]T

The 3 components of the acceleration can be expressed
in a polynomial form. The minimum order needed to satisfy
the boundary constraints is 2 for the vertical axis, 3 for the
horizontal components:

v̇(t) =

v̇x
v̇y
v̇z

 =

 v̇0x + c1xt+ c2xt
2

v̇0y + c1yt+ c2yt
2 + c3yt

3

v̇0z + c1zt+ c2zt
2 + c3zt

3

 (10)

By integrating the acceleration twice and applying the
boundary conditions, the trajectory is parametrized in terms
of time-of-flight tf and initial thrust magnitude T0, that are
considered as optimization parameters. Once the acceleration
profile is defined, the thrust-to-mass ratio can be obtained
from Eq. (7) and the thrust profile is:

T = mP (11)

where the mass profile is obtained by solving Eq. (8). An ana-
lytical solution is not available, nevertheless, an approximate
value of the integral is computed numerically. From the thrust

vector a complete guidance profile, in terms of Euler angles
and thrust magnitude, is easily obtained.

In addiction to boundaries constraints, the system is sub-
ject also to path and box constraints. The initial thrust mag-
nitude is bounded to the thrust actually available on-board,
while the time-of-flight must lie between its lower and upper
limit:

0 < Tmin ≤ T0 ≤ Tmax (12)
0 < tmin ≤ tf ≤ tmax (13)

The theoretical tmax is determined by the amount of fuel on
board mfuel, whereas the adopted tmin corresponds to the time
required by the lander to reach the ground with maximum
thrust pointing downward. Evidently tmin does not corre-
sponds to a feasible soft landing maneuver, and it is adopted
as a theoretical lower limit to exclude singularities arising
towards tf = 0. The angular velocity of the spacecraft is
limited by the actual control torques MCmax given by the At-
titude Control System (ACS). The extrapolation of the exact
torques from angles is not immediate, due to the coupled
terms in the attitude dynamics. Torques are approximated by
the decoupled term due to the angular acceleration, which is
a sufficiently accurate approximation in case of small angles
and low angular speed. Exploiting this approximation leads
to the following inequality:

Imax‖ω̇(t)‖ ≤MCmax (14)

in which ω̇ is the derivative of the rotational velocity vector,
and Imax is the maximum moment of inertia at initial time t0.
The rotational velocity ω is obtained from the relation:

ω =
a× ȧ

‖a‖2
(15)

where a = v̇ − g is the control acceleration vector whose
derivative ȧ is known exactly, being a polynomial in time.
The spacecraft is required to remain in a cone pointed at the
target and defined by the maximum slope angle δmax. This
constraint has has the dual purpose to assure that the the lan-
der does not penetrate the ground, even in presence of bulky
terrain features near the landing site, and to limit the angle of
view on the target. In fact, the performances of vision-based
navigation systems depend on the inclination between the tra-
jectory and the ground [14, 15]. The constraint is expressed
by the inequality:

r2y (t) + r2z (t) ≤ r2x (t) tan2(δmax) (16)

Path constraints need to be satisfied at every time instant
during the landing. Pseudospectral techniques allow us to
evaluate them discretely at Chebyshev-Gauss-Lobatto (CGL)
points. Derivative terms of the rotational vector are obtained
by the use of the Chebyshev differentiation matrix [16].

Finally, the final mass must be included between the ini-
tial value and the spacecraft dry mass. Since the mass trend



Table 1. Lunar landing MC analysis, large diversion maneu-
ver case: parameters dispersion.

Quant. Nominal std Units
r0 [2000,−1062, 0] [130, 600, 600] m
v0 [−35, 30, 0] [2, 2, 2] m s−1

e0 [−55, 0, 0] [5, 15, 0] deg
rf [30, 0, 0] - m
vf [−1.5, 0, 0] - ms−1

ef [−90, 0, 0] - deg
m0 865 10 kg
mdry 790 - kg
gmoon −1.624681 5% ms−2

Isp 325 5% s
Tmin 1000 5% N
Tmax 2320 5% N
Imax 1000 5% kgm2

is strictly monotone by problem construction, the only con-
straint with respect the minimum mass is verified:

m(tf) ≤ mdry (17)

3.1. Optimization Problem

The optimization problem takes the form:
Find T0 and tf, in the domain defined by the inequalities (12),
that minimize the fuel consumption computed by the Eq. (8),
subject to constraints (14), (16), and (17).
The optimization could be solved with any non-linear pro-
gramming (NLP) solver: the choice of this solver has a huge
impact over the final convergence properties and computa-
tional time. At DAER, a dedicated optimization algorithm
based on Taylor Differential Algebra (DA) was developed.

Differential Algebra techniques were devised to attempt
solving analytical problems through an algebraic approach
[17]. Instead to be modelled as simple real numbers, quan-
tities are represented as their Taylor expansion around a nom-
inal point. In this way, DA variables carry more information
rather than their mere punctual values. Computing the ob-
jective function as a DA variable it is possible to estimate its
sensitivity to the variation of the optimization variables. Then
through the operation of map inversion, stationary points of
the function can be found in a restricted number of iterations,
using only simple algebraic computation between Taylor co-
efficients. A detailed discussion about the developed opti-
mization algorithm is included in [12].

3.2. Numerical Results

To estimate the performances of the proposed algorithm, a
series of different simulations regarding a realistic case of lu-
nar landing were carried out. Extensive MC simulations were
exploited to assess the robustness and the flexibility of the

−2000

−1000

0

1000 −1500
−1000

−500
0

500
1000

0

500

1000

1500

2000

2500

Crossrange [m]
Downrange [m]

A
lt
it
u
d
e
 [
m

]

Fig. 5. Large scale diversion maneuver simulation (from
Ref. [12]).

proposed approach. The parameters considered in the initial
dispersion include initial position, velocity, attitude, amount
of fuel on board, specific impulse, spacecraft moment of in-
ertia, available thrust and gravity acceleration. The case here
reported as example represents a large scale diversion maneu-
ver from a nominal altitude of 2000m. The initial parameters
are summarized in Table 1, while the trajectories obtained
are shown in Figure 5: in all the cases, the ordered diver-
sion was found feasible by the guidance algorithm. These
results were compared with the solutions computed with a
general-purpose non-linear optimization software (SNOPT):
in the worst case observed, the difference between the two
solutions was less than 0.2%.

Y (Downrange) [m]

Z
 (

C
ro

s
s
ra

n
g

e
) 

[m
]

 

 

−4000 −3000 −2000 −1000 0 1000 2000 3000 4000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

[kg]

40

45

50

55

60

65

70

75

Fig. 6. Attainable area and fuel consumption comparison
(from Ref. [12]).

A Monte Carlo (MC) simulation is exploited also to assess
the algorithm performances in terms of attainable landing area
and fuel consumption. A series of 1× 105 random diversions
between ±4000m along both the horizontal axes is ordered
from the same nominal conditions of Table 1. The attainable
landing area can be obtained by correlating optimization re-
sults together with the coordinates of the TLSs, as shown by
Figure 6, in which only the feasible points (satisfying all the



constraints) are shown. The system is able to compute a feasi-
ble landing path in an approximately circular landing area of
radius larger than 2300m centred at the nominal landing site
(at the origin of the figure), a performance better than what is
required for similar scenarios [18, 19].

The simulation of Figure 6 was exploited also to obtain
an estimation of the computation time. All the simulations
were tested on a Intel R© CoreTM i7-2630QM CPU at 2GHz
of frequency. The mean computation time is 25.23ms with a
standard deviation (STD) of 7.16ms. The algorithm is very
fast (and further improvements are possible in code optimiza-
tion), compatible with on-board computation.

4. OPTICAL NAVIGATION

The Optical Navigation algorithm relies on a single grayscale
camera and is based on Simultaneous Localization and Map-
ping (SLAM) procedure. Information will be shared with all
the other subsystems, with particular attention given to the co-
operation of the generated map thread with the HDA. Monoc-
ular navigation is lately a topic of great interest because of
the advantages of been reliable, precise and low cost, being
the technology of digital cameras widely tested and consoli-
dated for space applications.

4.1. System architecture

The current outline of the system is under development, in-
spired by latest advances in robotics while considering the
typical constraints of space applications.
The proposed architecture for the Navigation System is shown
in Fig. 7.
Currently the Feature detection, the Matching and the Track-

Fig. 7. Navigation System architecture. Grayscale frames
from camera are sent to the algorithm which works on two
threads. One dedicated to features extraction and tracking and
the other dedicated to mapping.

ing branches are under development, while the map thread is
just defined conceptually and will be addressed in future.
The main idea is to follow the path introduced by [20], with
tracking and mapping running in separate CPU threads, but
in a more advanced way as in [21] and [22]. This would be

actually possible thanks to the later development of new mul-
ticore processors specifically designed for space applications.
Algorithm is bootstrapped by images coming from the camera
and works as follow:

Feature detection. Oriented FAST and Rotated BRIEF
(ORB) features are extracted from the current frame, an upper
bound limit on the number of those is set. These features are
invariant to scale and rotation and are resistant to noise. For
each feature a descriptor is also associated.

Matching. Once a couple of frames with their respec-
tive ORB features extracted (along with their descriptors)
are available, matching exploiting Hamming distance is per-
formed and is then exploited to discard outliers.

Tracking. After features correspondences between two
consecutive frames are obtained, roto-translation which con-
nects the two camera pose is computed. This is achieved ex-
ploiting 2D-2D correspondences of point features to solve the
Five Point Relative Pose Problem [23]. Once rotation ma-
trix and translation vector are calculated, the scale problem
must be addressed since the translation vector is actually not
scaled. At this step, without external measurements included
(nor from IMU or Laser Altimeter), it is only possible to find
relative scale exploiting triangulation of 3D points from 2D
features.

Mapping. The mapping branch is designed to work in-
dependently on a separate thread, parallel to the already
mentioned steps, similarly to [22] and [21]. Triangulated 3D
points are given as input along with frames from which are
obtained. The algorithm shall improve their 3D location (e.g.
with Bundle Adjustment BA), and then build the map which
will be used from the tracking thread in subsequent steps in
order to improve pose estimation precision solving Efficient
Perspective-n-Point (ePnP) problem.

4.2. Feature extraction

The first processing step for each frame sent by the camera to
the system is the feature extraction.
Different approaches to this problem exist and may be dev-
ided into feature based methods, with matching or tracking
exploiting optical flow, and direct methods, which work di-
rectly on pixel intensities. According to [22] feature based
methods, despite a bit higher computational cost, assure the
highest performances in terms of precision.
Most important objectives to be met by the feature detection
system are scale invariance and low computational cost of the
whole process. This because of the constraint of real time ap-
plication and because the s/c, being on a landing trajectory, is
expected to move increasingly close to the surface of a target
body, thus giving as input images with a scale that will change
drastically along the whole operation.

Given these considerations, ORB features extraction [24]
has been chosen. ORB is a very fast binary descriptor based



on Binary Robust Independent Elementary Features (BRIEF)
[25]. Features extracted are extremely fast to compute and
match, while they have good invariance to viewpoint, scale
and are resilient to different light conditions. The feature de-
tector is built on the Feature from Accelerated Segment Test
(FAST) corner detector and on the BRIEF descriptor, both
techniques which have good performances and low computa-
tional cost.
At the moment ORB has been implemented and set to build
for each frame in input an 8-level grey scale pyramid with a
scale factor of 1.2 and to extract 500 features along with their
descriptors. In Fig. 8 it is possible to see the application of
ORB on one of the frames from a synthetic video of a land-
ing trajectory on the Moon with camera pointing downwards.
ORB runs faster than other feature detection methods as the

Fig. 8. Example of ORB features from data set image. Circle
around keypoints with size according to scale and orientation
are shown.

Scale Invariant Feature Transform (SIFT) or the Speed-Up
Robust Feature (SURF) without loss of performance, result-
ing suited for real-time applications.

4.3. Matching

Matching is performed exploiting Hamming distance as sim-
ilarity measure between two descriptors. For each descriptor
in the first frame, the matcher finds the closest descriptor in
the second frame by trying one by one. Hamming distance
can be computed very efficiently between corresponding bi-
nary descriptor strings and is a peculiarity of ORB which
makes the process very fast.

Since at least 5 matching are needed for the tracking to
solve for roto-translation between a couple of frames, match-
ing is performed with subsequent incoming frames and rejec-
tion is done until at last 5 matches are found. Once the match-
ing is completed, result is fed into a routine which checks the
distances of extracted matches and discards ones whose dis-

tance is above a certain threshold. This is an heuristic way
to immediately discard clear outliers and retain only good
matches. In Fig. 9 an example is given to show the obtained
pairs even with frames separated by a wide baseline.

Fig. 9. Example of ORB features matched between two data
set images for the landing trajectory with a wide baseline (60
frames interval). Circles around key-points with size accord-
ing to scale and orientation are shown.

4.4. Tracking

Matched ORB features are given as input to the tracking block
which has the task to reconstruct the motion of the space-
craft frame by frame, in order to implement Visual Odometry
(VO).
VO intends to reconstruct the pose frame to frame from 2D to
2D image coordinate correspondences expressed in the two
camera reference systems, from which rotation matrix and
translation vector and consequently pose of the spacecraft are
obtained.
In order to set the problem, along with feature correspon-
dences, it is mandatory to know the calibrated camera matrix,
representing the link from the 3D world seen by the camera
to the 2D image plane.

First step is the calculation of the Essential matrix (E),
which relates corresponding 2D points on two different im-
ages according to epipolar constraints [26]. This can be done
solving the Five-Point Relative Pose Problem [23].
The algorithm consists of computing the coefficients of a
tenth degree polynomial in closed form and subsequently
finding its roots. Cheirality check allows to select among
the possible solutions (requiring for the reconstructed point
correspondences to lie in front of the cameras), and results
obtained are improved by RANSAC iterations to reject the
presence of outliers. Rotation matrix and translation vector
are thereafter computed solving a simple Singular Value De-
composition (SVD) problem from E.
Absolute scale of the translation can be computed only
through data fusion, in which measurements coming from
other sensors (IMU, Laser Altimeter), are properly filtered
along with the ones coming from VO. At the moment these



measurements are not integrated.
Considering this limitation, relative scale between each sub-
sequent frame can be computed and thus a scale factor to be
applied to each iteration.
This scale factor is obtained triangulating 3D points from
subsequent image pairs. From corresponding 3D points, the
relative distances between any combination of two 3D points
in the same frame can be computed. The proper scale can be
then determined from the distance ratio between a 3D point
pair obtained from the first image couple and from a 3D pair
in the second image couple. This way, concatenating all the
rotation matrices and translation vectors a coherent trajectory
for the spacecraft is obtained up to a known relative scale
factor.
About computational performances tests have been per-
formed on a Intel Core i7 CPU, running 64 bit Ubuntu 15.10
GNU/Linux operative system.
All the algorithm has been coded in C++ exploiting the open
source OpenCV-3.1.0 [27] library. Running the algorithm on
a single CPU thread, an average time of 26.07 ms and 8.44
ms have been registered respectively for the feature detection
and the feature matching subroutines. Being the tracking part
under heavy development, no computational time is available.

5. EXPERIMENTAL FACILITY

To further increase the TRL of the aforementioned algo-
rithms, an hardware-in-the-loop experimental facility is under
setup at DAER premises. Since the scarce availability of com-
plete real landing imagery datasets, vision-based algorithms
development relies widely on synthetic images. To validate
such approach, experiments are necessary. Moreover, the
whole navigation system performance can be assessed only
connecting the composing parts together, to verify mutual in-
fluences. As explained in details in next sections, the facility
is composed by a robotic arm carrying the sensors suite to
simulate lander dynamics, a 3D planetary mock-up, an illu-
mination system, control and test computers. A sketch of the
setup is present in Fig. 10. The goal is to reproduce the land-
ing maneuver over a reproduced planetary environment with
a realistic illumination condition. The system is designed to
verify either hardware and software breadboards up to TRL 4,
with possible further enhancements to qualify flight models
to TRL 5.

5.1. Planetary mock-up

The selection of a proper scale factor is needed to properly
determine the facility manufacturing requirements. It is as-
sumed that the hazard detection starts at a maximum altitude
of 2000 m. For reasons of cost containment, the choice of
the robotic arm was restricted to the use of an already avail-
able hardware, with an operative envelope of 1 m. Then, a
maximum scale factor of 2000:1 has been considered. The

Fig. 10. Experimental facility room setup.

expected accuracy at touchdown is in the order of 10 m due
to navigation errors, resulting equal to 5 mm in the scaled
environment. To have a resolution of the terrain at least one
order of magnitude greater than the landing accuracy, a reso-
lution of at least 0.5 mm is necessary. The scale factor can be
adapted to simulate closer range maneuvers with higher de-
tails, due to the fractal structure of the Moon surface.
The Renshape R© BM5460 polyurethane foam has been cho-
sen as material for the lunar diorama due to its surface finish
that yields the correct optical properties and because of its
great workability. Considering the selected scale, the maxi-
mum envelope of the robotic arm and the maximum consid-
ered field of view of a landing camera (60◦), the size of the
terrain mock-up has been set to 2400×2000 mm, resulting
from the assembly of 8 polyurethane foam sheets, each mea-
suring 1200×500 mm. The total thickness of a sheet is 100
mm: 70 are available for milling, 30 are used to fix the mock-
up to the support structure. The lunar DEM selected for the
diorama has been chosen for its terrain features. Surface data
come from NASA Lunar Reconnaissance Orbiter (LRO) mis-
sion3. Since the original resolution was too low for our pur-
poses, it has been increased up to 0.25 m/px adding craters,
boulders and fractal noise [8]. A 3D model of the physi-
cal milled surface to verify the required level of accuracy for
ground-truth measures, is going to be obtained through dense
matching photogrammetry or LASER scanning –both tech-
niques are already available at PoliMi– with a resolution of at
least 0.5 mm. A trade off is currently carried out to select the
best technique. First tests of photogrammetry performed on
a mock-up sample easily reached for the resolution require-
ment. The calibrated DEM is used as base onto which ground
trajectories are reconstructed during the test phase. An exam-
ple of lunar mock-up test is shown in Fig. 11, where two small
samples are side by side to verify milling process accuracy ad
the edges.

5.2. Robotic Arm

A Mitsubishi PA10-7C robotic arm is available at DAER. It
features 7 DoF and it is capable to handle a 10 kg payload in a

3Courtesy of NASA and Arizona State University. URL:
http://wms.lroc.asu.edu/lroc/rdr product select, last visit on: March 7,
2016.



Fig. 11. Two small mockup polyurethane samples from a con-
tiguous lunar DEM area side by side used for a preliminary
test of Renshape R© optical properties.

operative spatial range of 1.03 meters from its shoulder joint.
On top of the end effector the robotic arm carries the sensor
suite, that in case of the optical hazard detector in Section 2
is composed by a camera and a range sensor simulating the
altimeter.

5.3. Illumination system

It must be able to guarantee the realistic light environment
of the planetary surface during the simulation. In particular,
for planets without atmosphere like the Moon, diffuse light
must be avoided. It is composed by a CAME-TV LED array
with narrow beam angle and temperature adjustable between
3200 K and 5600 K which can also be adjusted in position
and light intensity; a Dimming system of non reflective black
structure to prevent external Sunlight and internal reflections
to jeopardize the simulation accuracy.

5.4. Inertial Measurement Unit

Since maneuver accelerations are scaled in the laboratory en-
vironment, whereas noise and disturbances are not, introduc-
ing an Inertial Measurement Unit in the sensor suite could not
be representative of an actual landing sequence, with unrealis-
tic signal to noise ratios in the software simulation. Trade-off
studies are currently ongoing.

5.5. Test campaign

Preliminary tests are ongoing to trim open points in the de-
sign: illumination system consistency with the requested
performances, taking into account also the optimal distance
of the light source with the diorama; verification of needs of
painting the mock-up milled surface. To evaluate the per-
formances, shadows correspondence and the light intensity

of shadowed and lit areas are under evaluation. As already
mentioned, the milled surface will be calibrated to be able
to compensate the simulated trajectory in the laboratory dur-
ing the simulations. At setup completed, functional tests
will be executed to verify the compliance with the require-
ments. Then, navigation and guidance algorithms are tested
through a ”bottom-up” procedure: first, single subsystems are
checked for their standalone performance; then, subsystems
are progressively joined together to check if relative cou-
plings degrade the performances under the minimum require-
ments; eventually, closed loop simulations test and validate
the overall facility in flight-like conditions. In this phase,
performances are the same of a flight-like system: dispersion
at touchdown, rate of successful landings, computational time
requested.

6. CONCLUSION AND FUTURE DEVELOPMENTS

A suite of tools and algorithms for vision based navigation for
autonomous landings in development at PoliMi-DAER have
been presented. An hazard detector based on a single camera
and artificial neural networks and an efficient semi-analytical
adaptive guidance algorithm are in an advanced state, while
the navigation is going to connect the two in near future.
An experimental facility based on a robotic arm to simulate
lander dynamics and a planetary mock up is being built for
their validation and test.
The research team scope is to complete an entire Adaptive
Guidance, Navigation and Control chain for autonomous
landings with a single camera integrating the three subsys-
tems aforementioned: the landing site selected on the hazard
map is transformed in a 3D point in the physical world by the
mapping process. The lander dynamics states of that point
are then utilized by the guidance algorithm to compute the
trajectory towards the landing site.

7. REFERENCES

[1] C.D. Epp and T.B. Smith, “Autonomous precision land-
ing and hazard detection and avoidance technology (al-
hat),” in Aerospace Conference, 2007 IEEE. Institute of
Electrical and Electronics Engineers, March 2007, pp.
1–7.

[2] “Chandrayaan Programme website,”
http://www.chandrayaan-i.com/index.php/chandrayaan-
2.html, Last visit: 26th Feb. 2016.

[3] Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng,
“Learning depth from single monocular images,” in Ad-
vances in Neural Information Processing Systems, 2005,
pp. 1161–1168.

[4] H. B. Kekre and S. M. Gharge, “Image Segmentation
using Extended Edge Operator for Mammographic Im-



ages,” International Journal on Computer Science and
Engineering, vol. 2, no. 4, pp. 1086–1091, 2010.

[5] M. S. Nixon and A. S. Aguado, Feature Extraction and
Image Processing, Newnes, 2002.

[6] Scott E. Fahlman and Christian Lebiere, “The cascade-
correlation learning architecture,” in Advances in Neural
Information Processing Systems 2, D.S. Touretzky, Ed.
1990, pp. 524–532, Morgan-Kaufmann.

[7] U.J. Shankar, Wen-Jong S., T.B. Criss, and D. Adams,
“Lunar terrain surface modeling for the alhat program,”
in IEEE Aerospace Conference, March 2008, pp. 1–10.

[8] Paolo Lunghi, Marco Ciarambino, and Michle Lavagna,
“A multilayer perceptron hazard detector for vision-
based autonomous planetary landing,” Vail, CO,
2015, AAS/AIAA Astrodynamics Specialist Confer-
ence 2015.

[9] F. Hörz, R. Grieve, G. Heiken, P. Spudis, and A. Binder,
Lunar Surface Processes, Cambridge University Press,
1991.

[10] G. Capuano, M. Severi, E. Della Sala, R. Ascolese,
C. Facchinetti, and F. Longo, “Compact and high-
performance equipment for vision-based navigation,” in
63rd International Astronautical Congress (IAC), 2012.

[11] M. Dunstan and K. Hornbostel, “Image processing chip
for relative navigation for lunar landing,” in 9th Inter-
national ESA Conference on Guidance, Navigation, and
Control Systems (GNC 2014), 2014.

[12] Paolo Lunghi, Roberto Armellin, Pierluigi Di Lizia,
and Michèle Lavagna, “Semi-analytical adaptive guid-
ance computation based on differential algebra for au-
tonomous planetary landing,” Napa, CA, Aug. 2016,
26th AAS/AIAA Space Flight Mechanics Meeting.

[13] Behçet Açikmeşe and Scott R. Ploen, “Convex pro-
gramming approach to powered descent guidance for
Mars landing,” Journal of Guidance, Control, and Dy-
namics, vol. 30, no. 5, pp. 1353–1366, 2007.

[14] Gregory Flandin, Bernard Polle, Noela Despré, Jacques
Lheritier, Nicholas Perrimon, and Pierre Blanc-Paques,
“Maturing vision based navigation solutions to space
exploration,” Toronto, Ontario Canada, Aug. 2010,
AIAAGNC, AIAA Paper 2010-7601.

[15] Joseph Riedel, Andrew Vaughan, Robert A. Werner,
Wang Tseng-Chan, Simon Nolet, David Myers, Niko-
laos Mastrodemos, Allan Lee, Cristopher Grasso, Todd
Ely, and David Bayard, “Optical navigation plan and
strategy for the lunar lander Altair; OpNav for lunar
and other crewed and robotic exploration applications,”
Toronto, Ontario Canada, Aug. 2010, AIAAGNC.

[16] Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni,
and Thomas A. Zang, Spectral Methods in Fluid Dy-
namics, Springer, New York, 1988.

[17] Martin Berz, Differential Algebraic Techniques. Entry
in Handbook of Accelerator Physics and Engineering,
World Scientific, New York, 1999.

[18] Jeff Delaune, Diego De Rosa, and Stephen Hobbs,
“Guidance and control system design for lunar de-
scent and landing,” Toronto, Ontario Canada, 2010,
AIAAGNC.

[19] Michael C. Johnson, “A parameterized approach to the
design of lunar lander attitude controllers,” Keystone,
CO, 2006, AIAAGNC.

[20] Georg Klein and David Murray, “Parallel tracking and
mapping for small AR workspaces,” in Mixed and Aug-
mented Reality, 2007. ISMAR 2007. 6th IEEE and ACM
International Symposium on. IEEE, 2007, pp. 225–234.

[21] Christian Forster, Matia Pizzoli, and Davide Scara-
muzza, “SVO: Fast semi-direct monocular visual odom-
etry,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on. IEEE, 2014, pp. 15–22.

[22] Raul Mur-Artal, JMM Montiel, and Juan D Tar-
dos, “ORB-SLAM: a versatile and accurate monocular
SLAM system,” Robotics, IEEE Transactions on, vol.
31, no. 5, pp. 1147–1163, 2015.

[23] David Nistér, “An efficient solution to the five-point
relative pose problem,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 26, no. 6, pp.
756–770, 2004.

[24] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and
Gary Bradski, “ORB: an efficient alternative to SIFT
or SURF,” in Computer Vision (ICCV), 2011 IEEE In-
ternational Conference on. IEEE, 2011, pp. 2564–2571.

[25] Michael Calonder, Vincent Lepetit, Christoph Strecha,
and Pascal Fua, “Brief: Binary robust independent el-
ementary features,” Computer Vision–ECCV 2010, pp.
778–792, 2010.

[26] Richard Hartley and Andrew Zisserman, Multiple view
geometry in computer vision, Cambridge university
press, 2003.

[27] G. Bradski, ,” Dr. Dobb’s Journal of Software Tools.


