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ABSTRACT 

 
This paper presents a study of transfers between distant 
retrograde orbits (DROs) and L2 halo orbits in the Earth-
Moon system that could be flown by a spacecraft with solar 
electric propulsion (SEP). Two collocation-based optimal 
control methods are used to optimize these highly-nonlinear 
transfers: Legendre pseudospectral and Hermite-Simpson. 
Transfers between DROs and halo orbits using low-thrust 
propulsion have not been studied previously. This paper 
offers a study of several families of trajectories, 
parameterized by the number of orbital revolutions in a 
synodic frame. Even with a poor initial guess, a method is 
described to reliably generate families of solutions. The 
circular restricted 3-body problem (CRTBP) is used 
throughout the paper so that the results are autonomous and 
simpler to understand. 
 

Index Terms— Electric propulsion, collocation, CRTBP 
 

1. INTRODUCTION 
 
The goal of this paper is to fill a gap in the types of transfers 
studied, as well as to begin understanding some of the 
families of transfers which exist for any low-thrust transfer in 
an N-body force field. Similar types of transfers that have 
been studied in the literature include: from Earth orbit to 
Moon orbit using low-thrust [1, 2], from Earth orbit to 
libration point orbits using low-thrust [3], from Earth to DRO 
using impulsive maneuvers [4], from Earth to DRO using 
low-thrust [5], from L1 halo orbit to L2 halo orbit, and solar 
sail transfers between libration point orbits of different Sun-
planet systems [6, 7].  

For the most part, results in the literature focus on a 
single example trajectory studied in great detail. However, 
there are few papers that study families of transfers. Topputo 
[8] showed that many distinct families of ballistic transfers 
exist between the Earth and Moon in a four-body model, and 
others have demonstrated that such variations exist for other 
types of transfers in Earth-Moon space [9, 10]. By exploring 
the families of transfers that exist between DROs and L2 halo 
orbits, this paper provides deeper insights into the trade space 
available. 

2. BACKGROUND 
 
2.1. Circular restricted three-body problem 
 
The full three-body problem has eluded analytical 
representation for centuries. Each body has 6 degrees of 
freedom, for a total of 18. There are only 10 known integrals 
of motion, so it is impossible to develop an analytical 
representation. Some common simplifications can be made to 
make the problem tractable.  

The circular restricted three body problem (CRTBP) 
makes two significant assumptions: the mass of the third 
body (the spacecraft) is negligible compared to the primary 
or secondary bodies, and the primary and secondary orbit the 
system barycenter in perfectly circular orbits [11].  

Non-dimensional distance and time units are used such 
that 1 DU is the distance from Earth to Moon, and 2𝜋 TU is 
the orbital period of Earth and Moon about their barycenter. 
The non-dimensional mass ratio 𝜇 (defined as the mass of the 
secondary divided by the system’s total mass) is used instead 
of the gravitational parameter of a two-body system. For the 
Earth-Moon system, 𝜇 is approximately 0.012151. A synodic 
reference frame is used, defined such that the x-axis is 
positive towards the secondary body. Earth is on the x-axis at 
−𝜇 , and the Moon is on the x-axis at 1 − 𝜇 . The z-axis is 

defined by the rotation axis of the system, and the y-axis 
completes the right-handed triad. This reference frame is 
shown in Fig. 1. The differential equations with thrust in the 
CRTBP in the synodic reference frame are 
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where 𝜇 is the mass ratio of the system, 𝑟( is the distance 
from the primary, 𝑟+ is the distance from the secondary, and 
𝑇[	] is the force due to thrust.  

Rate of mass change is given by 𝑚 = − 𝑇 /(𝐼:;𝑔=), 
where 𝐼:; is the specific impulse and 𝑔= is the standard sea-
level gravitational acceleration due to Earth.  

 
Fig. 1. Illustration of the Earth-Moon system in the CRTBP, 
viewed in the synodic reference frame. The Earth and the 
Moon are plotted, not to scale. Libration points L1 through L5 
are also shown, as are some zero-velocity curves of equal 
Jacobi constant. 

 
2.2. Halo orbits  
 
Halo orbits are so-named because when viewed in a synodic 
reference frame, they trace a “halo” in space. These orbit the 
libration points such as L1 or L2 [12]. The Orion/Moonrise 
mission concept would use Earth-Moon L2 as a low-fuel-cost 
rendezvous location for the manned Orion capsule and the 
proposed Moonrise vehicle carrying lunar samples [13].  
 
2.3. Distant retrograde orbits 
 
DROs are a type of orbit that have received increased 
attention in the past few years because of the unique 
characteristics they exhibit. DROs are a type of repeating 
orbit that exists only in the 3-body problem [11]. When 
viewed in a synodic reference frame, a DRO is retrograde 
about the secondary body, at a relatively high altitude such 
that the orbit is significantly perturbed by both the primary 
and secondary bodies. DROs are unique in that they sit 
between two-body orbits and libration point orbits in terms of 

stability. These orbits are often dynamically stable, though it 
has been shown that perturbations in a high-fidelity model of 
the solar system may cause a spacecraft to depart an 
otherwise stable DRO [14].  Parker, Bezrouk, and Davis 
demonstrated several trajectories that transfer from Earth to a 
DRO, requiring no maneuvers to capture at the DRO and 
remaining on the DRO for thousands of years [4].  

Mission concepts that have examined DROs include the 
proposed NASA/JPL Asteroid Redirect Mission [15] and the 
Orion/MoonRise concept [13], [16]. Both of these mission 
concepts could benefit from the capability to transit between 
an asteroid captured in the DRO and a potential space vehicle 
in the halo orbit. Ongoing research by Davis and Parker is 
finding that impulsive transfers between those orbits do exist, 
but they are costly on the order of 150 m/s and require transfer 
times on the order of weeks to months. The present work 
finds that spacecraft with SEP have the potential to greatly 
reduce the propellant mass required to make such transfers, 
without much increase in time of flight.  
 
2.4. Collocation 
 
The basic principle of collocation is to represent an ordinary 
differential equation with some continuous function which 
obeys the differential equations of motion at a set of nodes. 
Collocation is a direct method that transcribes an optimal 
control problem to a non-linear programming (NLP) problem 
which can be solved by any industry-standard NLP software 
[17]. The IPOPT NLP solver is used here [18]. A variety of 
collocation-based methods exist, distinguished by the node 
spacing and the choice of basis functions. Pseudospectral 
collocation is generally defined on one of three choices of 
meshes: Legendre-Gauss (LG), which does not have a control 
node on either endpoint; Legendre-Gauss-Radau (LGR), 
which has a control node on just one endpoint but not the 
other, and Legendre-Gauss-Lobatto (LGL), which has 
control nodes on both endpoints [19]. 

A helpful way to think of collocation is through a 
comparison to implicit numerical integration schemes. When 
propagating a system with known forces, information about 
the current state and, possibly, the state at previous 
integration steps is used to calculate the state at some time in 
the future. In collocation, rather than propagating a known 
initial state through known forces, the states and controls are 
optimization parameters subject to constraints. In order to 
find a solution which obeys the differential equations of 
motion, a defect is calculated at or between each node. 
Reference [20] has an excellent description of collocation.  

Two collocation methods are used for this research: 
Legendre pseudospectral, and Hermite-Simpson. These are 
used as implemented in the open source, optimal control 
package PSOPT (PseudoSpectral OPTimal control) [21]. In 
both cases, the NLP solver attempts to minimize the 



differential defect constraints while minimizing the cost 
function and minimizing any other constraint defects.  
 
2.4.1. Legendre pseudospectral approximation 
The Legendre pseudospectral method approximates each 
element of the state and control as an Nth order Lagrange 
polynomial at the N quadrature nodes. Time is transformed to 
be in the interval −1,+1 . The state 𝑥 at node 𝜏 is 
approximated by [19, 20, 21]:  

 
𝑥 𝜏 ≈ 𝑥 𝜏B ℒB 𝜏

D
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where ℒB are the Lagrange basis polynomials, and 𝜏 is the 
transformed time. The Lagrange basis polynomials ℒB 𝜏  can 
be expressed as follows: 
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where 𝐿D are the Legendre polynomials of order N of the 
form  
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The derivative of the state vector is analytically approximated 
as 
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where 𝐷 is the differentiation matrix with size 𝑁 + 1 ×
𝑁 + 1 . The elements of 𝐷 are given by 
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Differential defect constraints are calculated by taking 
the difference of the analytical derivative of the approximate 
state vector with the actual differential equations describing 
the dynamics.  

A limitation of PSOPT is that the number of phases must 
be defined a priori. For the Legendre pseudospectral 
approximation, we will use the term “phase” to mean a 
duration of time in the mission that is defined using the 
collocation nodes. Liu, Hager, and Rao have developed [23] 
a method for automatically refining the number of phases in 
addition to refining the number of nodes in each phase, using 
LGR nodes. Automatically refining the number of phases 

would permit greater accuracy near times of quickly-
changing dynamics, such as a lunar flyby, or discontinuous 
dynamics, such as thrust turning on or off. As it is, PSOPT 
suffers decreased accuracy in these situations because it is 
impractical to increase the number of nodes in the single 
phase to be high enough to have more than a few nodes near 
flybys.  

 
2.4.2. Hermite-Simpson approximation 

The Hermite-Simpson method defines a vector of 
differential defect constraints 𝜁 at node 𝜏B as follows [20, 22]:  

 𝜁 𝜏B = 𝑥 𝜏BV( − 𝑥 𝜏B
−
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When using the Hermite-Simpson method, PSOPT is 
able to perform automatic mesh refinement – placing more 
nodes near times of quickly-changing dynamics.  
 

3. METHODS AND APPROACH 
 

Throughout the analysis presented here, the initial 
spacecraft mass is 1500 kg, and the 𝐼:; is 3,000 seconds. The 
DRO used is completely in the Earth-Moon plane. It crosses 
the y-axis with positive y-velocity at x = 0.9 DU. The orbital 
period is approximately 5.55 days. The L2 halo orbit used has 
a maximum z-amplitude of approximately 53,000 km and an 
orbital period of approximately 14.0 days. These initial and 
final orbits are shown in several of the figures below, such as 
Fig. 4.  
 
3.1. Optimal control problem implementation in PSOPT 
 
The endpoints of the trajectory were constrained to lie on the 
DRO (for the initial point) and on the halo orbit (for the final 
point), but the optimizer could choose where to depart the 
DRO and where to arrive on the halo orbit: a set of 100 states 
on the DRO and on the halo orbit are hard-coded into the 
software, and then linear interpolation is used to find the state 
at an arbitrary location as requested by the optimizer through 
a static optimization parameter. The initial and final time are 
also free parameters. However, upper and lower bounds for 
time were implemented somewhat above and below the 
expected time of flight in order to scale the problem better.  



The spacecraft state at each node is a 7-element vector: 
3 components for position, 3 for velocity, and 1 for mass. The 
controls were represented as a 3-element vector at each node, 
for the x-, y-, and z-components of the thrust. Three path 
constraints were used: the upper limit of thrust magnitude, the 
lower limit for distance to the Moon, and the lower limit for 
distance to the Earth.  

Three objective functions were used separately: zero 
cost, minimum time of flight, and maximum final mass. The 
zero cost objective function was used to quickly find feasible, 
non-optimal transfers. These transfers were used only as 
intermediaries in order to accelerate the optimization of one 
of the other two objective functions. Resulting families of 
trajectories from each are presented later.  

All states and controls were scaled to be approximately 
of O(1). Non-dimensional units for distance and time were 
used as defined in section 2.1. Mass was scaled by a factor of 
1,000 so that the initial mass was 1.5 mass units rather than 
1,500 kg. Thrust was used in the physical units of Newtons.  

In general, we know that the optimal (minimum fuel) 
transfer will have the form “bang-off-bang” – maximum 
thrust, coast, maximum thrust. Since collocation methods 
represent the states and controls as continuous polynomials, 
it is impossible to find a perfectly sharp thrust cutoff using a 
single phase. This limitation can be avoided by using a multi-
phase problem formulation, where the trajectory is 
continuous only over a phase. Phase endpoints can then be 
constrained to match in position and velocity, but not thrust. 
PSOPT has the capability of solving multi-phase problems; 
however, for this work, a single phase was used. It is expected 
that using three phases (for thrust-coast-thrust) or more will 
allow PSOPT to find slightly more accurate transfers, as the 
thrust cut-off can then be perfectly sharp. Examples of thrust 
profiles found are presented in Fig. 2 and Fig. 3.  

For all results shown here, the NLP tolerance used was 
10-4, and the maximum number of iterations allowed was 

 

 
Fig. 2. Example of a thrust profile for a single-revolution 
transfer. There are two clear coast arcs visible, with fairly 
sharp thrust cutoffs. Use of multiple phases could achieve a 
very small accuracy improvement. 

3,000. A smaller tolerance will lead to solutions that match 
the actual dynamics more accurately, but more iterations 
within the NLP solver will be necessary. Several transfers 
were solved at a tolerance of 10-5, but it was deemed 
unnecessary to use such a small tolerance when performing a 
broad search.  
 

 
Fig. 3. Example of a thrust profile for a two-revolution 
transfer. Here, there are three coast arcs, but the thrust cutoffs 
are not as clean. Using multiple phases would clean up the 
thrust profile substantially and improve accuracy. 

 
3.2. Initial guess generation 
 
At the start of this research, attempts were made to find a 
“close” initial guess by choosing various control laws to 
propagate forward from the DRO and backward from the halo 
orbit, searching for intersection points. However, no close 
initial guess could be found in this way. Instead, a method 
was developed that allowed the problem to converge even 
when given a poor initial guess.  

Initial guesses were formed by a very simple means:  
1) Propagate an initial state on the DRO forward in time.   
2) Jump to an arbitrary point on the halo orbit and 

propagate an initial state on the halo orbit forward in 
time.  

3) Concatenate the states in the DRO with the states in 
the halo orbit.  

Now, we have a list of states and times that obey the force 
model at all points except the middle, where there is an 
instantaneous jump from the DRO to the halo orbit. The 
control was initialized to zero.  

It was found that the optimized trajectories produced by 
PSOPT generally consisted of the same number of 
“revolutions” about the Moon as the initial guess. This was 
found to be true independently for the DRO and for the halo 
orbit. The converged trajectory will generally have the same 
number of revolutions about the Moon as the initial guess, 
and the same number of revolutions about L2 as the initial 
guess. Although collocation methods have been found to 
have a sufficiently wide basin of attraction to solve N-body 



transfers such as these, the solutions found with such methods 
cannot claim to be globally optimal.  

Therefore, families of transfers could be selected to some 
extent by adjusting the number of revolutions about the DRO 
and the halo orbit in the initial guess. Three representative 
examples of transfers from 1-revolution, 2-revolution, and 4-
revolution families are shown in Fig. 4, Fig. 5, and Fig. 6, 
respectively.  
 

 
Fig. 4. A 1-revolution transfer, using 0.4 N max thrust (for an 
initial mass of 1500 kg), viewed in the synodic reference 
frame. The spacecraft begins in the DRO and ends in the L2 
halo orbit. Tick marks appear at ½ day intervals, and thrust 
vectors appear at ¼ day intervals. 

 

 
Fig. 5. A 2-revolution transfer, using 0.4 N thrust. 

 

 
Fig. 6. A 4-revolution transfer, using 0.4 N thrust. 

 
 
3.3. Method for finding families 
 

It was found that for the low-thrust DRO to L2 halo orbit 
transfer problem, the pseudospectral method was more likely 
to converge than the Hermite-Simpson method when given a 
poor initial guess. However, there is a danger that a close 
approach to the Moon will not be represented well by the 
pseudospectral method due to the fixed node spacing. For 
instance, if a transfer involved multiple revolutions about the 
Moon and there are too few nodes, the Legendre 
pseudospectral approximation can break down and have 
extremely poor accuracy. Although the optimizer may 
converge, the solution does not have physical meaning. The 
constraints on the Legendre pseudospectral approximation 
are met, but the nodes are spaced too far apart for the 
approximation to be accurate. An analogous limitation that 
many astrodynamicists are familiar with is the necessity of 
keeping time steps appropriately small when numerically 
propagating an orbit with a Runge-Kutta integration scheme. 
An example of having too few nodes is shown in Fig. 7.  

Having too few nodes can be resolved by mesh 
refinement techniques. Pseudospectral methods use global 
polynomials by definition, and since PSOPT uses only the 
phases defined a priori, the pseudospectral collocation 
method used here requires adding more nodes throughout the 
entire transfer in order to add nodes near a close approach to 
the Moon. The Hermite-Simpson method permits local mesh 
refinement, so more nodes could be added near the close 
approach only, without the need to add nodes elsewhere in 
the trajectory.  



 
Fig. 7. An incomplete trajectory using too few nodes. This is 
from a converged, minimum propellant solution. With only 
four nodes representing the inner revolution about the Moon, 
the solution has a poor accuracy and may change significantly 
when more nodes are added. 

The Hermite-Simpson method provides a workaround to 
this challenge via automatic mesh refinement – placing more 
nodes near times when the dynamics change quickly. In 
PSOPT, the pseudospectral method becomes very slow as the 
number of nodes grows. The greatest number of nodes used 
with the pseudospectral method was 160, which required a 
few hours to converge. The same transfer with the Hermite-
Simpson method required less than one hour to converge. 
With these considerations in mind, the following algorithm 
was developed to reliably generate families of transfers:  

1) Generate an initial guess with the appropriate number 
of revolutions about the Moon, as described in section 
3.2.  

2) Using the pseudospectral method, run the problem 
with zero cost function. This allows the optimizer to 
quickly find a feasible (but not optimal) transfer.  

3) Using the Hermite-Simpson method, set the objective 
function to maximize the final mass, and run the 
optimizer.  

4) Decrease the maximum thrust limit slightly. Using the 
Hermite-Simpson method again and the solution from 
step (3) as the initial guess, run the optimizer.  

5) Repeat step (4) until the problem no longer converges.  
By following the above algorithm, the families of transfers 
described in the figures below were found.  

In some cases, the optimizer would not converge. Even 
when the problem has not been fully solved, PSOPT will print 
solution files. Re-running the optimizer, with the failed 
solution as the new initial guess would sometimes result in a 
successful solution. This is due to PSOPT automatically 
recalculating the Jacobian and re-weighting the problem.  

One difficulty that was encountered many times was that 
the optimizer would (correctly) find that thrusting during a 
lunar flyby would improve the cost function. However, unless 

a large number of nodes were used initially, the lunar flyby 
would be represented by only one or two nodes. The accuracy 
of the entire trajectory would then deteriorate to a point such 
that it was impossible to interpolate the existing solution 
accurately enough to add more nodes.  

 

 
Fig. 8. Multiple close approaches to the Moon represented by 
too few nodes. 80 nodes are used here with the pseudospectral 
method. The close approaches result in a lower propellant 
mass (only 15 kg, as opposed to 23-28 kg for most of the 
transfers represented in this paper). We can see that the 
closest approach is represented by only a single node, which 
is not enough. 

 
Fig. 9. An example of a successfully-converged solution 
which uses a powered, close lunar flyby. The powered flyby 
results in lower propellant costs, but comes at the expense of 
a more sensitive trajectory. 

In order to make the trajectory in Fig. 8 more meaningful, 
either a larger number of nodes should be used in the 
pseudospectral method, or the Hermite-Simpson method 
should be used with automatic mesh refinement. In this case, 
the trajectory did not converge when the solution shown in 



Fig. 8 was used as an initial guess for the Hermite-Simpson 
method.  

In a few rare circumstances (such as shown in Fig. 9), the 
optimizer succeeded in adding subsequent nodes such that the 
trajectory became physically meaningful. However, this was 
not reliable.  

Additionally, a powered lunar flyby would be dangerous 
from an operations standpoint. Due to the chaotic nature of 
the dynamics, slight errors in the state estimate or in 
maneuver execution could have drastic effects on the orbit 
after the flyby. Looking at Fig. 9, we can see that the duration 
of a close approach is roughly 0.5-1 days, depending on the 
definition of “close approach”. Ground control during the 
close approach would be difficult at the least. In order to 
avoid these complications, a “keep-out” zone was enforced 
so that the spacecraft could never get closer than 0.04 DU, or 
about 9 lunar radii.  
 

4. ANALYSIS OF RESULTS 
 
Using the methods described above, four families of transfers 
were examined: 1-, 2-, and 3-revolutions, minimizing 
propellant; and 1-revolution, minimizing time.  

Within a family of transfers, lower thrust generally 
requires higher time of flight. Within each family, there are 
also branches which connect the families. For instance, in 
Fig. 10, the 1-revolution, minimum time case has three points 
which appear to lie on the 1-revolution, min propellant curve.  

The propellant mass required for these transfers 
generally lies between 23-28 kg. There were no observed 
trends between propellant mass and any other parameters 
used to describe the families of transfers. Fig. 11 shows the 
propellant mass as a function of the thrust limit.  

Within a family of transfers, decreasing the thrust 
requires departing further from the Moon, as seen in Fig. 12. 
This could have implications for navigation and/or science 
objectives. At some point, each family hit a limit for thrust, 
below which they would not converge. In general, the 
trajectory would take on an extra loop far from the Moon and 
violate the differential constraints from the dynamics. An 
example of this is shown in Fig. 13. Although a similar 
feature may exist in some real solutions, whenever it 
appeared in this work, the optimizer could not converge.  
 

 
Fig. 10. Time of flight as a function of the thrust limit. The 
2-revolution and 3-revolution cases were only examined at 
thrust levels of 0.4 N and below. 

 
Fig. 11. Propellant mass as a function of thrust. There is no 
clear relationship, and the propellant mass for almost every 
case lies between 23-28 kg. It is clear in the 1-revolution, min 
time case, especially, that there are multiple branches within 
each family, some of which are more favorable than others. 



 
Fig. 12. Maximum distance from the Moon as a function of 
the thrust limit.  

 
Fig. 13. A non-physical solution illustrating a common 
failure mode for the continuation method described. The loop 
which appears near x=0.8, y=0.45 came in for many cases in 
which the optimizer could not converge.  

 
5. CONCLUSION & FUTURE WORK 

  
Trajectories in N-body force fields are among the most 
difficult in astrodynamics to understand and optimize. 
Whenever possible, the problem has been effectively 
simplified by using the CRTBP. Even with those 
simplifications, however, there are only a handful of special 
types of orbits which are well-defined, such as the DRO and 
the L2 halo orbit used in this paper. Predicting a transfer 

trajectory between any two N-body orbits remains a great 
challenge.  

This work provides a modest advancement in generating 
such transfers and exploring the design space of all possible 
transfers. The greatest challenge faced so far is the extreme 
sensitivity of the dynamics – even the error in evaluating a 
collocation approximation can be great enough to change a 
solution.  

Further study is warranted to explore a wider variety of 
initial guesses and their impact on the optimized trajectories. 
Although it is possible to find solutions even from poor initial 
guesses, the structure of the initial guess has a strong impact 
on the structure of converged solutions. Thus, different initial 
guesses should reveal even more distinct families of 
solutions. Exploration of low-thrust “manifolds” connecting 
the DRO and halo orbit should help identify more families of 
transfers – including some that travel to the opposite side of 
the Earth-Moon system and back again. Similarly, the size 
and out-of-plane motion of the DRO and L2 halo orbit could 
be varied.  

PSOPT is an effective tool, but it has limitations. The 
most significant limitation encountered in this research is that 
it cannot use adaptive mesh refinement for the pseudospectral 
method. Other implementations of pseudospectral optimal 
control permit automatically adding more phases as 
necessary.  

In further study, more accurate dynamics should be used. 
This would involve using a full ephemeris model (rather than 
the CRTBP), and a shadowing model to cycle thrusting when 
the spacecraft is not in view of the Sun.  

Other future research areas include examination of other 
Earth-Moon system transfers and reducing the maximum 
thrust level to the capability of existing EP systems. Doing so 
will require new initial guesses and possibly new 
methodology.  
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