

Spacecraft Formation Control using Analytical Integration of GVE

ICATT 2016

Mohamed Khalil Ben Larbi, 14.-17.03.2016

Contents

Introduction

- Motivation
- Why ROE
- Gauss' variational equations
 - GVE
 - Control scheme
- Results and evaluation
 - Formation reconfiguration and keeping
- Conclusion and outlook

Motivation

Idea: derive a formation geometry guaranteeing

- minimum collision risk (passive safety)
- minimum number of correction maneuvers (passive stability).

Motivation

Idea: derive a formation geometry guaranteeing

- minimum collision risk (passive safety)
- minimum number of correction maneuvers (passive stability).

Challenge for active debris removal

Uncertainties in along-track

Motivation

Idea: derive a formation geometry guaranteeing

- minimum collision risk (passive safety)
- minimum number of correction maneuvers (passive stability).

Challenge for active debris removal

- Uncertainties in along-track
- \implies Separation in RN plane for safe formation

,

Formation description

Relative orbital elements

$$\delta \boldsymbol{\alpha} = \begin{pmatrix} \delta \boldsymbol{a} \\ \delta \boldsymbol{\lambda} \\ \delta \boldsymbol{e}_{x} \\ \delta \boldsymbol{e}_{y} \\ \delta \boldsymbol{i}_{x} \\ \delta \boldsymbol{i}_{y} \end{pmatrix} = \begin{pmatrix} (\boldsymbol{a}_{2} - \boldsymbol{a}_{1}) \, \boldsymbol{a}_{1}^{-1} \\ (\boldsymbol{u}_{2} - \boldsymbol{u}_{1}) + (\boldsymbol{\Omega}_{2} - \boldsymbol{\Omega}_{1}) \cos \boldsymbol{i}_{1} \\ \boldsymbol{e}_{x_{2}} - \boldsymbol{e}_{x_{1}} \\ \boldsymbol{e}_{y_{2}} - \boldsymbol{e}_{y_{1}} \\ \boldsymbol{i}_{2} - \boldsymbol{i}_{1} \\ (\boldsymbol{\Omega}_{2} - \boldsymbol{\Omega}_{1}) \sin \boldsymbol{i}_{1} \end{pmatrix}$$

with $u = M + \omega$, $e_x = e \cos \omega$ and $e_y = e \sin \omega$.

E/I polar notation

 $\delta \mathbf{e} = \delta \mathbf{e} (\cos \phi \sin \phi)^{\mathrm{T}}$ and $\delta \mathbf{i} = \delta \mathbf{i} (\cos \theta \sin \theta)^{\mathrm{T}}$

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 4 Spacecraft Formation Control using Analytical Integration of GVE

Conclusion and outlook Motivation Why ROE

Eccentricity/Inclination Separation

Relative trajectory (without Drift)

E/I separation

Technische Universität

Braunschweig

- safe formation for $\delta e \parallel \delta i$

$$\bullet \ \delta \boldsymbol{\alpha}_{\text{nom}} = \begin{pmatrix} \delta \boldsymbol{a}_{\text{nom}} & \delta \lambda_{\text{nom}} & \boldsymbol{0} & -\|\delta \boldsymbol{e}_{\text{nom}}\| & \boldsymbol{0} & +\|\delta \boldsymbol{i}_{\text{nom}}\| \end{pmatrix}^{T}$$

14.-17.03.2016 | Mohamed Khalil Ben Larbi | Seite 5 Spacecraft Formation Control using Analytical Integration of GVE

ntroduction Gauss' variational equations results Conclusion and outlook Motivation Why ROE

Why relative orbital elements

- Maintains decoupling of in-plane and out-of-plane motion
- More accuracy (retaining higher order terms)
- Adoption of Gauss variational equations (GVE)

Gauss variational equations

 $1 \mathbf{D}(\mathbf{n})$

$$\begin{split} &= \frac{1}{na} \mathbf{D} \left(\mathbf{\mathcal{X}}_{OSC} \right) \cdot \mathbf{Y} \\ & \frac{\mathrm{d}a}{\mathrm{d}t} = \frac{2}{n\sqrt{1 - e^2}} \qquad [e\sin(\nu) \,\gamma_{\mathrm{R}} + (1 + e\cos\nu) \,\gamma_{\mathrm{T}}] \\ & \frac{\mathrm{d}M}{\mathrm{d}t} = n + \frac{1 - e^2}{nae} \qquad \left[\left(\cos\nu - \frac{2e}{1 + e\cos\nu} \right) \gamma_{\mathrm{R}} - \left(1 + \frac{1}{1 + e\cos\nu} \right) \sin\nu \,\gamma_{\mathrm{T}} \right] \\ & \frac{\mathrm{d}e}{\mathrm{d}t} = \frac{\sqrt{1 - e^2}}{nae} \qquad \left[\sin(\nu) \,\gamma_{\mathrm{R}} + (\cos E + \cos\nu) \,\gamma_{\mathrm{T}} \right] \\ & \frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{\sqrt{1 - e^2}}{nae} \qquad \left[-\cos\nu \,\gamma_{\mathrm{R}} + \left(1 + \frac{1}{1 + e\cos\nu} \right) \sin\nu \,\gamma_{\mathrm{T}} \right] - \frac{r\sin(\omega + \nu)\cos i}{na^2\sqrt{1 - e^2}\sin i} \gamma_{\mathrm{N}} \\ & \frac{\mathrm{d}i}{\mathrm{d}t} = \frac{r\cos(\omega + \nu)}{na^2\sqrt{1 - e^2}} \qquad \left[\gamma_{\mathrm{N}} \right] \\ & \frac{\mathrm{d}\Omega}{\mathrm{d}t} = \frac{r\sin(\omega + \nu)}{na^2\sqrt{1 - e^2}\sin i} \qquad \left[\gamma_{\mathrm{N}} \right] \end{split}$$

 The subscript γ_• indicates the direction of the perturbation acceleration, originated -in this case- from a maneuver

 $\frac{\mathrm{d}\alpha}{\mathrm{d}t}$

• Gauss variational equations $\frac{d\delta \alpha}{dt} = f(\delta \alpha, \gamma_p)$

• Gauss variational equations $\frac{d\delta \alpha}{dt} = f(\delta \alpha, \gamma_{\rho})$

• Gauss variational equations $\frac{d\delta\alpha}{dt} = f(\delta\alpha, \gamma_p)$

• Gauss variational equations $\frac{d\delta \alpha}{dt} = f(\delta \alpha, \gamma_p)$

Finite duration thrust

$$\Delta \boldsymbol{v} = \int_{t_1}^{t_2} \boldsymbol{\gamma}_{\rho} \mathrm{d}t$$

• Gauss variational equations $\frac{d\delta \alpha}{dt} = f(\delta \alpha, \gamma_p)$

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 8 Spacecraft Formation Control using Analytical Integration of GVE

• Gauss variational equations $\frac{d\delta \alpha}{dt} = f(\delta \alpha, \gamma_p)$

Aim

Maneuver set to reconfigure the formation into $\delta \pmb{\alpha}_{nom}$

Technische Universität Braunschweig

14.-17.03.2016 | Mohamed Khalil Ben Larbi | Seite 8 Spacecraft Formation Control using Analytical Integration of GVE

Maneuver sequence

• solve GVE for $\Delta \mathbf{v}_{_{\mathrm{M}}} \Longrightarrow \Delta \mathbf{v}_{_{\mathrm{M}}} = f(\Delta \delta \alpha, u_0, \Delta u)$

Maneuver sequence

• solve GVE for
$$\Delta \mathbf{v}_{_{\mathrm{M}}} \Longrightarrow \Delta \mathbf{v}_{_{\mathrm{M}}} = f(\Delta \delta \alpha, u_0, \Delta u)$$

Major challenge

Compute the intermediate alteration $\Delta \delta a_{\rm T} = f(\Delta \delta \alpha, u_0, \Delta u)$

14.-17.03.2016 Mohamed Khalil Ben Larbi Seite 9 Spacecraft Formation Control using Analytical Integration of GVE

Introduction Gauss' variational equations results Conclusion and outlook

Impulsive & finite-duration planning

Impulsive thrust (IT)

solve GVE for $\Delta \textit{v}_{_{
m M}}$

Finite-duration thrust (FDT)

solve integrated GVE for $\Delta t_{_{
m M}}$

Impulsive & finite-duration planning

Impulsive thrust (IT)	Finite-duration thrust (FDT)
solve GVE for $\Delta \textit{v}_{_{\mathrm{M}}}$	solve integrated GVE for $\Delta t_{\rm \scriptscriptstyle M}$
\Downarrow	\downarrow
IT major challenge	FDT major challenge
$\Delta \delta a_{I} = f(\Delta \delta \alpha, u_{0}, \Delta u)$ analytically resolvable	$\Delta \delta a_{\rm I} = f(\Delta \delta \alpha, u_0, \Delta u)$ analytically not resolvable

Impulsive & finite-duration planning

Braunschweig

Formation reconfiguration and keeping

Error assessment

- Inserting $\Delta t_{\rm M}$ from IT into integrated GVE

 \Rightarrow analytical assessment of formation error induced through impulsive planning

14.-17.03.2016 Mohamed Khalil Ben Larbi | Seite 12 Spacecraft Formation Control using Analytical Integration of GVE

Conclusion

Summary

- GVE for finite duration maneuver derived with several possible applications
- FDT and IT control scheme using 4T2N maneuvers

Conclusion

Summary

- GVE for finite duration maneuver derived with several possible applications
- FDT and IT control scheme using 4T2N maneuvers

Conclusion

Summary

- GVE for finite duration maneuver derived with several possible applications
- FDT and IT control scheme using 4T2N maneuvers

Outlook

- Verification via high fidelity simulation with high risk debris objects
- Inclusion of perturbations and estimation uncertainties.
- Assessment of required computational power and suitability as on-board solution

