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ABSTRACT

This paper derives a control concept for far range Formation
Flight (FF) applications assuming circular reference orbits.
The paper focuses on a general impulsive control concept for
FF which is then extended to the more realistic case of non-
impulsive thrust maneuvers. The control concept uses a de-
scription of the FF in relative orbital elements (ROE) instead
of the classical Cartesian description since the ROE provide a
direct access to key aspects of the relative motion and are par-
ticularly suitable for relative orbit control purposes and col-
lision avoidance analysis. Although Gauss’ variational equa-
tions have been first derived to offer a mathematical tool for
processing orbit perturbations, they are suitable for several
different applications. If the perturbation acceleration is due
to a control thrust, Gauss’ variational equations show the ef-
fect of such a control thrust on the keplerian orbital elements.
Integrating the Gauss’ variational equations offers a direct re-
lation between velocity increments in the local vertical lo-
cal horizontal (LVLH) frame and the subsequent change of
keplerian orbital elements. For proximity operations, these
equations can be generalized from describing the motion of
single spacecraft to the description of the relative motion of
two spacecraft. This will be shown for impulsive and finite-
duration maneuvers. Based on that, an analytical tool to es-
timate the error induced through impulsive planning is pre-
sented. The resulting control schemes are simple and effective
and thus, also suitable for on-board implementation. Simula-
tions show that the proposed concept improves the timing of
the thrust maneuver executions and thus reduces the residual
error of the formation control.

Index Terms— Gauss’ variational equations, relative or-
bital elements, impulsive thrust, continuous thrust

1. INTRODUCTION

The theory of spacecraft (s/c) formation flying has become
the focus of considerably extensive research and development
effort during the last decades. Earlier design techniques ad-
dressed rendezvous and docking missions such as those of the

Apollo space program, which had the Lunar Excursion Mod-
ule and the Command and Service Module being assembled
in orbit. The purpose is not to correct the Earth relative orbit
itself during this maneuver, but rather to adjust and control
the relative orbit between two vehicles. The relative distance
is decreased to zero in a very slow and controlled manner dur-
ing the docking maneuver [1].

The modern-day focus of s/c formation flying has ex-
tended to maintain a formation of various s/c. Several forma-
tion flying missions are currently operating or in the deisgn
stage: synthetic aperture interferometers for Earth obser-
vation (e.g. TanDEM-X/TerraSAR-X), dual s/c telescopes
(e.g. XEUS) and laser interferometer for the detection of
gravitational waves (e.g. LISA). It became obvious that
the formation flying concept overcomes significant techni-
cal challenges and even avoids financial limitations. Indeed,
the distribution of sensors and payloads among several s/c
allows higher redundancy, flexibility, and new applications
that would not be achievable with a single s/c [2]. Recently,
formation flying with non-cooperative objects has emerged
as a new focus, motivated through the increasing number of
such objects especially in low Earth Orbit. The exploitation
of satellite-based resources has led to an ever increasing num-
ber of non-cooperative objects such as defunct satellites and
rocket upper stages termed as space debris. A collisional
cascading effect has been postulated by Kessler in the late
seventies [3] and seems more real than ever since 2009 when
two intact artificial satellites, Iridium 33 (operational) and
Kosmos 2251 (out of service) collided distributing debris
across thousands of cubic kilometers. Using the the NASA
long-term orbital debris projection model (LEGEND), Liou
showed that, besides already implemented mitigation mea-
sures, the annual active debris removal (ADR) of 5-10 prior-
itized objects from orbit, is required in order to stabilize the
LEO environment [4]. Those results have been backed by
several other studies [5] and meanwhile are widely accepted
in the space debris community.

This evolution has led to a substantial research effort to
develop a theory that could simply and explicitly address
the relative motion and collision avoidance issue in control



design. Thus the development of the upcoming theories,
such as the relative orbital elements (ROE) and Eccentric-
ity/Inclination (E/I) vector separation, originally developed
for collocation of geostationary satellites [6], were conducted.

The control of satellite formation is performed by the ac-
tivation of on-board thrusters. Typically, impulsive control
(very short duration thrust) is preferred to continuous control
(finite-duration thrust). This is due to historical limitation on
propulsion technologies, typical payload requirements espe-
cially for scientific missions, and the simplicity of impulsive
planning often allowing pure analytical maneuver design. Re-
cent advances in propulsion and computer technologies sug-
gest a deeper study of continuous planning. This approach
is not only justified by the precision of continuous maneuvers
planning (the finite duration is explicitly addressed and no im-
pulsive assumptions are made) but also because of the typical
advantages of low thrust propulsion systems, such as reduced
mass, limited required power, and variable exhaust velocity.

A vast amount of literature exists on formation recon-
figuration maneuvers with impulsive thrust mainly modeled
with Clohessy-Wiltshire and Lawden’s equations of relative
motion. The Gauss’ variational equations (GVE) of motion
however offer an ideal mathematical framework for design-
ing impulsive control laws [7]. These equations have been
extensively used in the last decades for absolute orbit keeping
of single s/c, but have only recently been exploited for forma-
tion flying control in LEO as introduced by Schaub et. al [8]
and subsequently by Vaddi et al. [9], Breger et al. [10] and
D’amico [11]. The reason for such slow development is that
GVE describe the effect of control acceleration on the time
derivative of the Keplerian orbital elements which were nor-
mally used to parametrize the motion of a single s/c but not
the relative motion of a formation [10].

In this paper, we build upon the previously mentioned ref-
erences and give the following original contributions. Firstly,
a comprehensive literature survey of the relative motion
parametrization and Gauss’ variational equations for relative
motion is presented demonstrating the convenience of ROE
and GVE-based maneuver planning as opposed to Cartesian
parametrization. Secondly, Gauss’ variational equation for
relative motion using finite duration thrust are derived for
a specific set of ROE. Thirdly, an impulsive maneuver plan
based on[2] is extended to the general case of non-zero rel-
ative semi major axis and finally translated to the case of
finite-duration thrust. The paper is organized as follows.
In section 2, an overview of the theory of relative motion,
including ROE, is presented. In section 3, an overview of
the GVE and their application in relative orbit control is
presented and the integrated GVE are derived. Section 4 is
dedicated to the study of the effects of impulsive and finite
duration thrust on ROE. Subsequently the impulsive and fi-
nite duration maneuver schemes are derived in section 5 and
verified via numerical simulation.

2. DYNAMICS OF RELATIVE MOTION

First of all we define some notations adopted in this paper.
The motion of a single s/c orbiting the Earth is described in
the Earth Centered Inertial (ECI) frame. The relative mo-
tion of two s/c orbiting the Earth is described in the radial-
tangential-normal (RTN) frame (Fig. 1).

The ∆(.) operator indicates arithmetic differences be-
tween absolute Cartesian or Orbital parameters. The δ(.)
operator indicates the relative Cartesian position and veloc-
ity in the RTN Frame. It refers generally to a non-linear
combination of the absolute Cartesian/orbital parameters.

The s/c about which all other s/c motions are referenced
is called the Client and is denoted with subscript (•1). The
second s/c, referred to as Servicer, is to fly in formation with
the Client and is denoted with the subscript (•2). Absolute
Cartesian and orbital parameters without subscript are to be
understood as Client parameters.

2.1. Linearized Equations of Relative Motion

The Client position vector in the Earth-centered inertial frame
(ECI) is noted r1. The relative orbit will be described in the
rotating local orbital frame RTN in terms of the Cartesian co-
ordinate vector δr =

(
x y z

)T
. We introduce dimension-

Fig. 1. Illustration of a s/c formation in RTN frame

less spatial coordinates and a dimensionless time τ via the
equations:

δρ =
δr

r1
=
(
x̄ ȳ z̄

)T
and dτ = ndt , (1)

δρ =
δr

r1
=
(
x̄ ȳ z̄

)T
(2a)

dτ = ndt , (2b)

with n the mean motion. The differentiation with respect to
the independent variable τ is written here as

()
′ ≡ d ()

dτ
. (3)



The dimensionless state vector is then noted

δx =
(
δρ δρ ′

)T
. (4)

The Clohessy-Wiltshire (CW) equations of motion take a very
elegant numerically advantageous form if written in a non-
dimensional form [12]:

x̄′′ − 2ȳ′ − 3x̄ = 0 (5a)
ȳ′′ + 2x̄′ = 0 (5b)
z̄′′ + z̄ = 0 . (5c)

Note that these equations of motion are valid only if :

• the Client orbit is circular,

•
∥∥δρ∥∥� r1,

• the Client and Servicer s/c have a pure Keplerian mo-
tion.

Further, the out-of-plane component z̄ in equation (5c) decou-
ples from the radial and along track directions (in-plane). A
more detailed view on how the equations are obtained can be
found in [1, 12].

2.2. Solution of the Linearized Equations of Motion

The CW equations (5) are a set of three coupled ordinary
homogeneous second order equations with constant coeffi-
cients. Six independent constants are thus required to de-
termine a unique solution for a relative orbit. The general
homogenous solution can be written as the product of a state
transition matrix Φ(τ.τ0) with an integration constants vector

c
(
c1 · · · c6

)T
. A possible representation is:

δx (τ) = Φ (τ, τ0) c , with Φ (τ, τ0) =
1 0 − cos τ − sin τ 0 0

− 3
2 (τ − τ0) 1 2 sin τ −2 cos τ 0 0

0 0 0 0 sin τ − cos τ
0 0 sin τ − cos τ 0 0
− 3

2 0 2 cos τ 2 sin τ 0 0
0 0 0 0 cos τ sin τ

 ,

(6)
and c a vector containing a set of six independent integration
constants as described in [13]. To study the geometry of the
relative path we rewrite the first three rows of equation (6) in
amplitude-phase form

x̄ = c1 − c34 cos (τ − ϕ) (7a)

ȳ = c2 − c1
3

2
(τ − τ0) + 2c34 sin (τ − ϕ) (7b)

z̄ = + c56 sin (τ − θ) . (7c)

The amplitudes and phases of the in-plane and out-of-plane
relative motion oscillations are

c34 =
√
c23 + c24 c56 =

√
c25 + c26 (8)

ϕ = arctan

(
c4
c3

)
θ = arctan

(
c6
c5

)
. (9)

We can easily see from (7) that the Servicer moves in an

Fig. 2. Illustration of the integration constants in the projected
instantaneous (no drift) relative motion ellipse at τ = τ0.

elliptical-like pattern around the Client as illustrated in Fig. 1
and Fig. 2. Indeed:

• The projection of the relative path in the RT plane is
an ellipse centered in (c1, c2). Because of the drift
term c1

3
2 (τ − τ0) the ellipse is instantaneous and the ȳ-

value of the center is valid only at τ = 0. Bounded rel-
ative motion is hence obtained for c1 = 4x̄0 +2ȳ′0 = 0.

• The RN projection is an ellipse centered in (c1, 0) for
(ϕ − θ) ∈ {0, π} which gets tighter and dwindle to a
line for (ϕ − θ) → π

2 . In the case of bounded rela-
tive motion (c1 = 0) the Client lies on this line which
leads to collision risk if along-track position uncertain-
ties exist and suggests choosing (ϕ − θ) ∈ {0, π} to
minimize this risk. This Presumption will be discussed
in section 2.4.

2.3. Relative Orbital Elements

In conventional analysis, the set of independent variables c
could be computed using the initial conditions consisting of
the position r and velocity v at some specific initial time
t0, often taken at zero for convenience. However, any six
independent constants can describe the solution, with the
physical nature of the problem usually dictating the choice.
Many authors worked on that issue searching combinations
of Keplerian elements of the co-orbiting s/c to describe their
relative motion ([14]). The motivation for this effort was
the advantages of the Keplerian elements description, expe-
rienced for single s/c in the last decades, compared with the
classical position-velocity description. Similar advantages
were expected and could be noticed. This new approach pro-
vides direct insight into the formation geometry and allows



the straightforward adoption of variational equations such as
the Gauss’ ones to study the effects of orbital perturbations
on the relative motion.

In this paper a set of non-singular orbital elements α =(
a u ex ey i Ω

)T
is used to describe the absolute or-

bit of a s/c with u = M + ω, ex = e cosω, and ey = e sinω
where a denotes the semi major axis, e the eccentricity, i the
inclination, Ω the right ascension of the ascending node, ω the
argument of periapsis, M the mean anomaly, and u the mean
argument of latitude.

We define the ROE introduced by D’Amico [11]:

δα =


δa
δλ
δex
δey
δix
δiy

 =


(a2 − a1) a−1

1

(u2 − u1) + (Ω2 − Ω1) cos i1
ex2 − ex1

ey2
− ey1

i2 − i1
(Ω2 − Ω1) sin i1

 ,

(10)
where δλ denotes the relative mean longitude, δe and δi the
relative eccentricity and inclination vectors. The ROE defined
in (10) are all invariants of the unperturbed relative motion
with the exception of δλ, which evolves linearly with time.
δλ̇ can be approximated to first order as

δλ̇ = ∆u̇ = n2 − n1 = −3

2
n1

∆a

a1
(11)

The general linearized relative motion of the Servicer relative
to the Client is provided in terms of ROE by

δαj(t) = δαj0 −
3

2
(u(t)− u0) δα10

δ2
j (12)

where j denotes the vector index (j = 1, ..., 6), the subscript
0 indicates quantities at the initial time t0 and δ2

j is the Kro-
necker delta. Note that the only assumptions made here are
pure Keplerian motion and ∆u,∆a << r1. These equations
are hence valid for arbitrary eccentricities.

2.4. Final Comments

These ROE have the distinct advantage of matching exactly
the integration constants of equation (6) [11]. It follows

(c1, c2, c34, c56) = (δa, δλ, ‖δe‖ , ‖δi‖) (13)

ϕ and θ are the arguments of the vectors δe and δi in polar
coordinates as depicted in Fig. 3.

That means that the vector c is not only an integration
constant vector which could be geometrically interpreted in
the relative trajectory (Fig. 2) but also receives a geometri-
cal meaning by means of Servicer’s and Client’s Keplerian
elements. Statements about the relative orbit geometry can
directly be made based on the absolute Keplerian elements
without solving any equation. For example if ∆i and ∆Ω

Fig. 3. Illustration of the relative orbital elements in the
projected instantaneous (no drift) relative motion ellipse at
u = u0.

are found to be zero, then it can immediately be concluded
that the amplitude of the out-of-plane motion is zero (c56 =
‖δi‖ =

√
(∆i)2 + (∆Ω sin i1)2).

Furthermore, we obtain a mapping tool between the rel-
ative state vector δx (τ) at a generic time τ and the initial
ROE vector δα(τ0). Keeping in mind the equivalence be-
tween mean argument of latitude u and the independent vari-
able τ , we write :

δx(u) = Φ(u, u0)δα(u0) (14)

Of practical use is mainly the inverse linear mapping from the
relative state vector to the initial ROE vector with Φ−1(u, u0) =

4 0 0 0 2 0
6(u− u0) 1 0 −2 3(u− u0) 0

3 cosu 0 0 sinu 2 cosu 0
3 sinu 0 0 − cosu 2 sinu 0

0 0 sinu 0 0 cosu
0 0 − cosu 0 0 sinu


(15)

It may be noted that this choice of the ROE maintain the de-
coupling of the motion. In other words δa, δλ, and δe de-
scribe the in-plane motion δi describes the out-of-plane mo-
tion.

Moreover the usage of ROE increases the accuracy of the
CW general solution because it retains higher order terms
which are normally dropped using Cartesian description [1].
For example the first order Cartesian constraint for bounded
relative motion (c1 = 4x̄0 + 2ȳ′0 = 0) translated in ROE
yields δa = 0. This is in fact the only condition on two in-
ertial orbits to have a closed relative orbit since their energies
are equal. The ROE constraint is thus universally valid (no
linearization).

Because of the coupling between semi major axis and or-
bital period, small uncertainties in the initial position and ve-
locity result in a corresponding drift error and thus in a grow-
ing along-track error [11]. Long-term predictions of the rel-
ative motion between Servicer and Client are therefore sen-
sitive to both orbit determination errors and maneuver execu-
tion errors. In order to minimize the collision risk of the two



s/c in the presence of along-track position uncertainties, they
must be properly separated in RN directions. As expected
from the results of section 2.2 and shown in [6] this can be
achieved by a (anti-)parallel alignment of the δe and δi vec-
tors ((ϕ − θ) ∈ {0, π}) . In this case RN separations never
vanish at the same time and provide a minimum safe separa-
tion between the s/c at all times. This principle is termed E/I
separation.

Perturbations of the motion such as J2 and atmospheric
drag effects can be easily incorporated through the convenient
orbital elements description. The only perturbation which af-
fect the E/I separation is the earth oblateness [11]. It turned
out that choosing δix = 0 avoids a secular motion of δλ and
δi due to J2 and provides hence a more stable configuration.
Therefore the passively safe and stable configuration given
through δαnom =

(
δa δλ 0 ±‖δe‖ 0 ±‖δi‖

)T
is

adopted as nominal configuration in this work.
Finally, all six relative state variables (position and ve-

locity) are fast varying variables, meaning that they vary
throughout the orbit. Using ROE simplifies the relative or-
bit computation because even within a perturbed orbit , e.g.
gravitational perturbations, ROE will only change slowly.
Due to its curvilinear nature large rectilinear distances can be
captured by small ROE variations. This property is exploited
and illustrated by the use of GVE for the relative control as
described in the next section.

3. GAUSS’ VARIATIONAL EQUATIONS

The Gauss’ variational equations derived in [7] describe in the
RTN frame the alteration of Keplerian Orbital elements due to
a disturbance acceleration γ

p
. If the perturbation acceleration

is due to a control thrust, GVE show what effect such a control
thrust would have on the keplerian orbital elements. Based on
the general GVE description in [7] it is possible to derive the
GVE in terms of the non-singular orbital elements vector α
and build the limit for e→ 0 for a circular orbit. As result we
get

da

dt
=2a

γ
T

na
(16a)

du

dt
=n− 2

γ
R

na
− sinu

tan i

γ
N

na
(16b)

dex
dt

=2 cosu
γ

T

na
+ sinu

γ
R

na
(16c)

dey
dt

=2 sinu
γT

na
− cosu

γR

na
(16d)

di

dt
= cosu

γ
N

na
(16e)

dΩ

dt
=

sinu

sin i

γ
N

na
(16f)

Given an impulsive acceleration γ
p

at a generic time t0,
the integration of the system of equations (16) over the

impulse provides the relation between the maneuver ∆v
M

and the subsequent change in orbital elements ∆α where

∆v
M

=
∫ t+M
t−M

γ
p
dt and (·M) denotes the maneuver execution

time
For proximity operations, these equations can be gener-

alized from describing the motion of single spacecraft to the
description of the relative motion of two spacecraft. This ap-
proach is the most natural way to control relative orbital ele-
ments and have the main advantage that it allows us to trans-
late the aforementioned advantages of the ROE parametriza-
tion into maneuver planning.

3.1. Impulsive Thrust

We can extend the result above for relative motion. Let τf the
dimensionless final time immediately after the maneuver and
τi the dimensionless initial time. The alteration in relative or-
bital elements can be expressed a s a function of the absolute
orbital elements at different dimensionless times

∆δα =f(α2(τ+
M), α2(τ−M), α1(τ+

M), α1(τ−M)) (17a)

We obtain the direct relation between velocity increments in
the RTN frame and the consequent change of ROE:

∆δα(u) =
1

n2a2
G(u, uM)∆v

M
, with

G(u
M

) =


0 2 0
−2 −3(u− u

M
) 0

sinu
M

2 cosu
M

0
− cosu

M
2 sinu

M
0

0 0 cosuM

0 0 sinuM

 . (18)

∆δα denotes the alteration of the ROE, (·M) the maneuver ex-
ecution time and ∆v

M
. It is possible to summarize the factor

1/n2a2 and ∆v
M

to obtain the dimensionless velocity incre-
ment ∆ρ′

M
. Taking into account the evolution of the ROE

described in (12) we deduce that the alteration of δλ evolves
after the maneuver linearly according to the following law

∆δλ = δλM − 3(u− uM) (19)

This result has been already incorporated in equation (18),
so that G(uM , uM) decribes the instantaneous change in ROE
while G(u, u

M
) takes into account the linear evolution of δλ.

3.2. Relation to The State Transition Matrix

It is worth noting that the inverse state transition matrix
Φ−1(u, u0) in equation (15) and the variation matrixG(u, uM)
in equation (18) are closely connected. We rewrite the map-
ping rule for convenience:

∆δα(u) =G(u, u0)∆ρ′
0

(20a)

δα(u0) =Φ−1(u, u0)δx(u) (20b)



If we set δρ = 0, implying that both spacecrafts have same
position but different velocities in the inverted linear motion
model of equation (20b), we obtain the effect of an instanta-
neous velocity increment on the ROE vector [11]. Let Φ−1 in
equations (15) be divided in four 3× 3 blocks Φ−1

ij
(u, u0), it

follows

δα(u0) =
[
Φ−1

12
(u, u0) Φ−1

22
(u, u0)

]
δρ′(u) (21)

Equations (21) and (18) are equivalent, the only difference
between them is the opposite sign in the term −3(u − u

M
).

This is due to the fact that the result is calculated for different
mean argument of latitudes: u refers to after the maneuver
while u0 refers to the initial state.

The equations above assume impulsive maneuver which
would require a propulsion source of infinite Thrust. In prac-
tice thrusts have always a finite duration which can be approx-
imated as follow:

∆t
M

= m2

∥∥∆v
M

∥∥ /Fmax , (22)

with Fmax the available thrust level. Considering the execu-
tion as impulsive is a valid assumption for small maneuvers
and thus adequate for maneuver planning. For large maneu-
vers the finite duration of the thrust has to be considered ex-
plicitly.

3.3. Finite-Duration Thrust

Depending on the amplitude of the maneuver, the mass of the
s/c and the available thrust level, it is possible that the com-
puted maneuver duration (22) is too large to be considered as
impulsive. In this case, u

M
cannot be considered constant dur-

ing the maneuver anymore. Let γ
M

be the available level of
acceleration in the RTN directions and [t1, t2] the maneuver
execution time interval. We integrated (18) and obtain

∆δα =
1

n2
2a2

H(ũ
M
, û

M
)γ

M
, with (23)

H(ũM , ûM) =
0 2ûM 0

−4ûM − 3
2 (2ûM)

2
0

2 sin ũ
M

sin û
M

4 cos ũ
M

sin û
M

0
−2 cos ũ

M
sin û

M
4 sin ũ

M
sin û

M
0

0 0 2 cos ũ
M

sin û
M

0 0 2 sin ũ
M

sin û
M


,

(24)

ũ
M

=
u(t2) + u(t1)

2
and û

M
=
u(t2)− u(t1)

2
(25)

Note that ûM is the halved dimensionless maneuver duration
and ũM the mean argument of latitude at the middle point of
the maneuver.

4. ASSESSMENT OF ORBITAL MANEUVERS

We assume that there are three different thrust directions: ra-
dial, along-track and normal. The fuel consumption FC due
to a single impulse is proportional to the norm of the impulse
vector. One impulse in normal direction is required to recon-
figure the out-of-plane motion, while two in RT-direction are
needed to reconfigure the in-plane motion. Based on the re-
sults of Vaddi etal.[9] and D’amico [11] we choose π as the
optimal separation between two impulses.

Based on equation (18), one can deduce that radial maneu-
vers are safer than along-track ones since they do not affect
the relative semi major axis and thus do not induce an evolv-
ing change (drift) in mean longitude. However, they are twice
as expensive as along-track and are not able to achieve com-
plete formation reconfiguration because the relative semi ma-
jor axis can only be changed using along-track maneuvers. In
this paper far range formation are considered, in which an ap-
proach via drift is desirable and thus exclusively along-track
maneuvers are used for in-plane control. The insecurity is
compensated through appropriate separation in RN-direction.

4.1. Impulsive Thrust Maneuvers

4.1.1. Out-of-Plane Maneuvers

The desired variation in the inclination vector can be obtained
using maneuvers in normal direction. The influence of impul-
sive thrusts is given by equatio (18) where ∆vN is the nor-
mal impulsive thrust (scalar value) and u

N
the location of the

thrust. The non-trivial solution is given by a single thrust lo-
cated at u

N1
or u

N1
+ π. Depending on the actual position on

the orbit one can choose the closest solution to the actual po-
sition. However, operational constraints may suggest splitting
the out-of-plane maneuver in two components located at u

N1

and u
N1

+ π. This allows for example to correct maneuver
execution errors. Let p be the thrust distribution coefficient,
the double thrust solution is:{

∆v
N1

= pna‖∆δi‖ at u
N1

= arctan
(

∆δiy
∆δix

)
∆v

N2
= (p− 1)na‖∆δi‖ at u

N2
= u

N1
+ π, p ∈ [0, 1]

(26)

4.1.2. Out-of-Plane Delta-V Budget

Single and double thrust impulsive maneuvers have the same
delta-v budget:

FC = |∆v
N1
|+ |∆v

N2
| = na‖∆δi‖ (27)

4.1.3. In-Plane Maneuvers

The desired variation of the relative eccentricity vector δe,
relative semi major axis δa and relative mean longitude δλ
can be obtained using maneuvers in along-track and/or radial



direction. The influence of impulsive thrusts is given by equa-
tion (18) where ∆vR and ∆vT are respectively the radial and
along-track impulsive thrusts (algebraic values) , u

R
and u

T

the locations of the thrusts.
It is possible to control the relative eccentricity with a sin-

gle thrust. The side effect is a persistent variation of the mean
semi major axis and thus, an increasing change of the mean
longitude. Beside operational constraints suggesting the split-
ting of maneuvers, a double-thrust solution can limit the in-
stantaneous variation of semi major to between the thrusts.
That means that, for p = 0.5, there is no change of the semi
major axis but a change of the mean longitude at the end of
the maneuver.{

∆v
T1

= p 1
2na‖∆δe‖ at u

T1
= arctan

(
∆δey
∆δex

)
∆v

T2
= (p− 1) 1

2na‖∆δe‖ at u
T2

= u
T1

+ π p ∈ [0, 1]
(28)

The pair of along-track maneuvers planned to settle the new
δe vector change temporarily the relative semi major axis δa
and thus cause a change of δλ. The caused drift between
the maneuvers is ∆δλ = ± 3

2pπ‖∆δe‖. Along-track maneu-
vers can be exploited to correct additionally the semi major
axis[2]. One solution for the control of δa and δe is given by{

∆v
T1

= 1
4na (+‖∆δe‖+ ∆δa) at u

T1
= arctan

(
∆δey
∆δex

)
∆v

T2
= 1

4na (−‖∆δe‖+ ∆δa) at u
T2

= u
T1

+ π
(29)

The double thrust solution induces a non vanishing semi
major axis difference that makes the spacecraft drift from
each other. We have to take that into account in our control
strategy and plan a second pair of maneuvers to stop the drift
and acquire the desired mean longitude δλ alteration (along-
track separation). To stop (counteract) the variation of δλ we
aim a (slightly non) zero at the end of the second pair of ma-
neuvers which make the spacecraft maintain the target sepa-
ration (drift back). The caused drift between the maneuvers
remains ∆δλ = ± 3

4π‖∆δe‖.

4.1.4. In-Plane Delta-V Budget

Since the choice of p does not influence the total fuel con-
sumption we set p = 0.5 and obtain a homogeneous distribu-
tion.

FC = |∆v
T1
|+ |∆v

T2
| = 1

2
na‖∆δe‖ (30)

4.2. Finite-Duration Thrust Maneuvers

4.2.1. Out-of-Plane Maneuvers

The equation describing the influence of finite-duration
thrusts on the out-of-plane motion is given by equation (23)
where ∆tN is the duration of the thrust, γN is the normal
thrust acceleration (scalar value) and u

N
the location of the

thrust. Analogously to the impulsive case, the solution for a
homogeneous distribution (p = 0.5) is given by∆t

N1
= 2

n arcsin
(
n2a‖∆δi‖4|γ

N
|

)
at ũ

N1
= arctan

(
∆δiy
∆δix

)
∆t

N2
= 2

n arcsin
(
n2a‖∆δi‖4|γ

N
|

)
at ũ

N2
= ũ

N1
+ π

(31)
where γ

N
= ±|γ

N
|

4.2.2. Out-of-Plane Delta-V Budget

We consider the simple (and not limiting the generality) case
of p = 0.5. The index refers to the number of maneuvers{

FC1 = |γN |∆tN
FC2 =

∑
k|γN |∆tNk = |γN | (∆tN1 + ∆tN1)

(32)

Lemma 1. The splitting of the out-of-plane maneuvers re-
duces the propellant consumption

Proof. We define the function h(x) = arcsin
(
x
2

)
− 1

2 arcsin (x).
It can be shown that this function is monotonically decreasing
for x ∈ [−1, 1] . It follows that{
h(0) = 0

h monotone decreasing
⇒ h(x) < 0∀x ∈ ]0, 1]

⇒ arcsin
(x

2

)
<

1

2
arcsin (x)

we set x = n2a‖∆δi‖2|γ
N
| ∈ ]0, 1]

⇒ arcsin

(
n2a
‖∆δi‖
4|γ

N
|

)
<

1

2
arcsin

(
n2a
‖∆δi‖
2|γ

N
|

)
⇒ ∆t

N1
<

1

2
∆t

N1

⇒ FC2 < FC1

In a physical sense we can derive this result in the follow-
ing way. The finite-duration thrust takes place along the arc
length û

M
The effectiveness of the maneuver is at maximum

near the middle point ũ
M

. Splitting the maneuver provides
two arcs separated by π and thus increases the effectiveness
of the maneuver since the length of the portion in vicinity of
ũ

M
(two in our case) increases.

Lemma 2. The minimum of the (splitted) out-of-plane ma-
neuver cost is given by a homogenous distribution (p = 0.5)

Proof. Let h(p) = arcsin (kp) + arcsin (k(1− p)), where k
is a positive constant and p a real variable in[0, 1].

d

dp
h(p) = 0⇔ k[(1− (kp)2)−1 − (1− k2(1− p)2)] = 0

⇔ p2 = (1− p)2

⇔ p = 0.5



Since d2

dp2h(0.5) > 0, we deuce that h(p) has a global mini-
mum at p = 0.5.

In a physical sense, we can derive this result in the follow-
ing way. The length of the arc in vicinity of ũ

M
is maximized

for homogenous distribution and thus the effectiveness of the
maneuver is maximized for p = 0.5

4.2.3. In-Plane Maneuvers

The equation describing the influence of finite-duration
thrusts on the in-plane motion is given by equation (23)
where ∆tR/∆tT is the duration of the thrust, γR/γT is the
radial/along-track thrust acceleration (algebraic value) and
u

R
/u

T
the location of the thrust. Analog to the impulsive

case, the solution for a homogeneous distribution (p=0.5) is
given by

∆t
T1

= 2
n arcsin

(
n2a‖∆δ~e‖8‖γ

T
‖

1

cos
(

1
2n

an∆δa
4‖γ

T
‖

)
)

+ an∆δa
4‖γ

T
‖

∆t
T2

= 2
n arcsin

(
n2a‖∆δ~e‖8‖γ

T
‖

1

cos
(

1
2n

an∆δa
4‖γ

T
‖

)
)
− an∆δa

4‖γ
T
‖

(33)
respectively at ũ

T1
= arctan

(
∆δey
∆δex

)
, ũ

T2
= ũ

T1
+ π with

γ
T

= ±‖γ
T
‖

4.2.4. In-Plane Delta-V Budget{
FC1 = |γT |∆tT
FC2 =

∑
k|γT
|∆

Tk
= |γ

T
| (∆t

T1
+ ∆t

T1
)

(34)

5. CONTROL OF RELATIVE MOTION

5.1. Control Scheme

The control scheme in this paper is based on the following
considerations

• Three different thrust directions (radial, along-track
and normal) are available. This increases the fuel
consumption in case skewed thrusts are needed but is
still a valid assumption since maneuvers are typically
constraint to certain directions.

• The reconfiguration of δe using two along track maneu-
vers is an optimal solution in that case [9, 11].

• The two along-track thrusts can be used to simultane-
ously reconfigure δex, δey and δa (and hence a non-
vanishing variation of δλ). This is still an adequate sub-
optimal solution for the in-plane reconfiguration since
generally δa remains small.

• To stop a drift (i.e. set δa to zero) we need two pulses so
that only δa is affected. Obviously, δλ is also affected
from the maneuver but has a constant value after the
execution. δex and δey change only between the two
maneuvers and finally take on their initial values at the
end of the maneuvers.

The formation reconfiguration and formation keeping are
performed using the concept illustrated in Fig. 4 which is
valid for the general case of δa 6= 0 and for the finite-duration
thrust case. The desired change of the relative semi major
axis is split in ∆δa = ∆δaI + ∆δaII. Two along-track ma-
neuvers settle a change of the relative eccentricity vector ∆δe
and the intermediate change of the relative semi major axis
∆δaI. Due to the new settled semi major axis δλ will evolve
with a constant rate until a second pair of along-track ma-
neuvers provoke the second semi major axis change ∆δaII.
Commonly the second pair will stop the drift by setting δa
to zero. ∆δaI has to be chosen in a way so that the total drift
(inclusive between the maneuver pairs) corresponds to the de-
sired change ∆δλ. For the out-of-plane motion a single pulse
split in two equivalent pulses will reconfigure δi.

u (rad)
uT1 uN1 uN2uT2 uT3 uT4

u0

Δu

π

π

πnT

Fig. 4. Exemplary maneuver sequence for complete forma-
tion reconfiguration

5.1.1. Impulsive Scheme

Based on the results of the last section, we derived the 6 im-
pulsive thrusts (IT) as follows:

∆v
T1

=
1

4
na (∆δaI + ‖∆δe‖) at u

T1
= ϕ (35a)

∆v
T2

=
1

4
na (∆δaI − ‖∆δe‖) at u

T2
= u

T1
+ π (35b)

∆v
T3

=
1

4
na∆δaII at u

T3
= u

T2
+ nT

(35c)

∆vT4 =
1

4
na∆δaII at uT4 = uT3 + π (35d)

∆v
N1

= +
1

2
na‖∆δi‖ at u

N1
= θ (35e)

∆v
N2

= −1

2
na‖∆δi‖ at u

N2
= u

N1
+ π (35f)



The intermediate change of the relative semi major axis can
be determined analytically ([15]):

∆δaI =
− 2∆δλ

3 − π‖∆δe‖
2 − δa0 (u

T1
− u0 + nT + 2π)− ∆δa

2

nT + π
(36)

5.1.2. Finite-Duration Scheme

Based on equation (23), we extended the solution in equa-
tion (35) to the case of finite-duration thrusts (FDT)

û
T1

= arcsin

 n2a‖∆δe‖

8|γ
T
| cos

(
n2a∆δaI

8|γ
T
|

)
+

an2∆δaI

8|γ
T
|

(37a)

ûT2 = arcsin

 n2a‖∆δe‖

8|γ
T
| cos

(
n2a∆δaI

8|γ
T
|

)
− an2∆δaI

8|γ
T
|

(37b)

û
T3

= +
an2∆δaII

8|γ
T
|

(37c)

ûT4 = +
an2∆δaII

8|γ
T
|

(37d)

û
N1

=
2

n
arcsin

(
n2a
‖∆δi‖
4|γ

N
|

)
(37e)

û
N1

=
2

n
arcsin

(
n2a
‖∆δi‖
4|γ

N
|

)
(37f)

Note that the middle point of each maneuver ũM matches
exactly the pulse location u

M
of the IT above. Furthermore

∆δaI involves solving a transcendental equation and can not
be calculated analytically in case of finite-duration maneu-
vers. One possible approach is to approximate ∆δaI to the
value computed via impulsive planning in equation (36) [16].
The transcendental equation can be approximated to a poly-
nomial equation and solved via numerical iteration. First tests
show that sufficiently accurate results are obtained after 3 to
6 iteration steps. This issue will not be treated in this paper.

5.2. Simulation

In this section the proposed control schemes are verified
through a numerical integration of the nonlinear differen-
tial equations of motion using a Matlab-Simulink simula-
tion environment. An assessment of the achievable perfor-
mance via closed loop simulation is presented. The bound-
ary conditions were defined assuming unperturbed motion
and a Servicer s/c with a mass of 870 kg and a maximal
thrust level of 0.4N. As described in section 2.4 a pas-
sively safe and stable configuration has been defined as
δαnom =

(
δa δλ 0 ±‖δe‖ 0 ±‖δi‖

)T
. The ini-

tial and targeted final ROE used in the simulation are listed in
Table 1.

Table 1. Initial and final configurations

aδa aδλ aδex δey aδix aδiy
Initial(m) 29 −8000 0 0 0 0
Final (m) 0 −6000 0 −500 0 250

5.2.1. Formation reconfiguration

We examine an approach phase including a complete for-
mation reconfiguration (FR) and keeping(FK) (same desired
configuration) with a maneuver set interval ∆u correspond-
ing to 12h. It’s assumed that this frequency corresponds to
the radar measurement update. The implemented algorithm
compares the measured configuration (initial) to the desired
one (final) and computes a set of 6 maneuvers based on the
finite-duration scheme. This step is repeated after 12h to
compute a maneuver set for formation keeping in case the
desired configuration has not been reached or did not remain
stable.
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Fig. 5. Analytical assessment of formation error induced
through impulsive planning.

Fig. 6 shows the temporal evolution of the individual
ROE. The desired formation is achieved with high precision
within the first 12h and remains stable so that no maneuvers
are needed for the formation reconfiguration. The error is
9.8m for aδλ and remains under 1m for the rest of the ROE.
The temporal evolution of the elements coincides with the
predicted behavior described in section 5.1 with the excep-
tion of small variations in aδex and aδix which are supposed
to remain zero. This would be the case if the maneuvers
are executed in an impulsive manner. Since maneuvers are
executed along an arc centered at uM a temporal change is
induced which sums up to zero at the end of the maneuver.
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Fig. 6. Temporal evolution of the ROE during formation reconfiguration and formation keeping maneuvers

Further small discrepancies are explained as linearization
errors.

5.2.2. Integrated GVE as Error Assessment Tool

It is possible to use the integrated GVE as precise (opposed
to the standard GVE) analytical tool to propagate the effect
of thrust maneuvers on ROE. We approximate the duration of
maneuvers ∆t

M
For IT using (22). Inserting this ∆t

M
in(23)

yields the induced alteration in ROE. This provides an ana-
lytical tool to estimate the error induced through impulsive
planning. Depending on mission profile, this allows us to
determine a threshold value (targeted alteration in ROE), for
which impulsive planning is sufficient to achieve the required
precision. Fig. 5 depicts the analytical error estimation for
aδey and aδiy . The estimated errors (1.6 % for aδey and 2 %
for aδiy) coincide with simulation results.
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