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P. V. Anderson and H. Schaub, “Methodology for Characterizing High-Risk 
Orbital Debris in the Geosynchronous Orbit Regime,” AAS/AIAA Space 
Flight Mechanics Meeting, Williamsburg, VA, January 11–15, 2015. 
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Subject to tether dynamics and 
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applications of electrostatic actuation. Concepts 

have been explored as early as 1960s.

Tethered and 
Inflatable 
Structures

J. H. Cover, W. Knauer, and H. A. Maurer, “Lightweight Reflecting 
Structures Utilizing Electrostatic Inflation”, US Patent 3,546,706, 
October 1966

C. R. Seubert and H. Schaub, “Tethered Coulomb Structures: 
Prospects and Challenges,” Journal of Astronautical Sciences, 
Vol. 57, Nos. 1-2, Jan.-June 2009. doi:10.1007/BF03321508
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E. A. Hogan and H. Schaub, “Space Debris Reorbiting Using Electrostatic 
Actuation,” AAS Guidance, Navigation and Control Conference, Breckenridge, 
February 3–8, 2012.

Debris Re/De-Orbiting

Opportunities exist for many space-based 
applications of electrostatic actuation. Concepts 

have been explored as early as 1960s.
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J. H. Cover, W. Knauer, and H. A. Maurer, “Lightweight Reflecting 
Structures Utilizing Electrostatic Inflation”, US Patent 3,546,706, 
October 1966

C. R. Seubert and H. Schaub, “Tethered Coulomb Structures: 
Prospects and Challenges,” Journal of Astronautical Sciences, 
Vol. 57, Nos. 1-2, Jan.-June 2009. doi:10.1007/BF03321508
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Touchlessly actuate objects separated by 
dozens of meters. Proposed:


Electrostatic Detumble of GEO Debris

Consider a GEO debris object
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D. Stevenson, and H. Schaub, Optimization of Sphere Population for Electrostatic Multi Sphere 
Model, 12th Spacecraft Charging Technology Conference, Kitakyushu, Japan, May 14–18, 2012

Surface MSM

Maxwell FEM

Finite element methods require 
minutes to solve the charge for a 

particular configuration.

MSM is a lumped charge representation

FEM vs. MSM
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Ŷ

Ẑ
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Ẑ

Electrostatic force

between 2 spheres

New Basis Equations of Motion

⇥ ⇥ �⌅2(r̂ · b̂2)� ⌅3(r̂ · b̂3)

�̇ sin� = �⌅2(r̂ · b̂3) + ⌅3(r̂ · b̂2)
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invariants given a perturbation acceleration.

Ẋk = F(X(tk), tk) = B(X(tk), tk)ad

LROEs can be propagated with any acceleration 
rotated into the relative orbit frame.
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Numerical Simulations
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Conclusions:

• Expand the relative motion detumble analysis to include objects that are not axi-
symmetric. 

Future Work:

• The choice of relative orbit provides substantial increase/decrease in detumble 
performance.


• The Linearized Relative Orbit Element (LROE) approach provides insightful approaches 
to optimizing the servicer relative orbit.


• Without significant loss in performance, the relative orbit may be selected for operational 
simplicity using a leader-follower or for operational safety where a safety ellipse orbit is 
available.
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to optimizing the servicer relative orbit.


• Without significant loss in performance, the relative orbit may be selected for operational 
simplicity using a leader-follower or for operational safety where a safety ellipse orbit is 
available.
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