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Introduction
● Need for accurate interplanetary orbit propagation:

► Asteroid impact monitoring

► Interplanetary mission analysis and design

● Special perturbation techniques satisfy the strictest accuracy 
requirements

● Challenging case: close encounters with major bodies

● Close trajectories diverge after an encounter, chaotic dynamics

● Most straightforward numerical method: integration of equations in 
rectangular coordinates

● Numerical techniques for close encounters: variation of step size/order

● Is it possible to do better?
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● Elements are quantities which evolve smoothly if      is small →desirable 
for numerical integration

● Equations for classical orbital elements are singular

● Integrate regularized equations of motion of alternative element sets

Generalized elements and regularized formulations

Perturbed two-body problem (rectangular coordinates)

“The temptation at this point […] is to simply integrate the system of 
differential equations by a numerical technique. This unsophisticated approach 
throws away all our knowledge of the two-body problem and its integrals.” 
(Bond and Allman, 1996)
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● Regularization: elimination of singularities from the equations of motion 
through analytical techniques

● Regularizing the equations has significant numerical advantages

➔Change of independent variable from physical to fictitious time 
(generalized Sundman transformation):

Regularization techniques
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The Dromo family of regularized element methods
● Originally developed in 2006 by Peláez et al. (SDG-UPM) as an orbit 

propagator for tether applications

●State of the particle conveyed through 7 orbital elements + time/time 
element

●Equations of motion are almost-fully regularized

Peláez et al., “A special perturbation method in orbital dynamics,” 
CMDA, vol. 97(2), 2006. Original formulation

Baù et al., “A new set of integrals of motion to propagate the perturbed 
two-body problem”, CMDA, vol. 116(1), 2013. Perturbing potential

Baù et al., “Time elements for enhanced performane of the Dromo 
orbit propagator”, AJ, vol. 148, 2014. Time elements

Roa et al., “Orbit propagation in Minkowskian geometry”, CMDA, vol. 
123(1), 2015.

Particularization to 
hyperbolic motion

Baù et al., “Non-singular orbital elements for special perturbations in 
the two-body problem”, MNRAS, vol. 454(3), 2015.

Particularization to elliptic 
motion, pert. potential

Baù et al., “New orbital elements for accurate orbit propagation in the 
Solar System”, Proceedings of the 6th ICATT, 2016.

Particularization to 
hyperbolic motion, pert. 

potential
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Propagation of a “tough” geocentric orbit
KePASSA 2014 orbit propagation challenge

SMA (km) ECC (-) INC (º) RAAN (º) AOP (º) M0 (º)

106338 0.859 55.1 231.4 257.7 332.6

tol δr (km) δε (%) CPU (s)

10-6 161433 0.01 10.3

10-9 20566 5 x 10-5 23.0

10-11 501 1.3 x 10-6 60.0

Initial conditions

Accuracy vs. computational time
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Propagation methodology
Online Trajectory Matching algorithm

● Element methods perform well for 
weak perturbations

● Close encounters: strong perturbations

● Online Trajectory Matching: 
decompose the trajectory into three 
weakly-perturbed phases

● Change phase at a pre-defined 
planetocentric distance, the switch 
radius R

sw

Phase H-
Heliocentric,

pre-encounter

Switch of primary body
and reference frame

Phase CE
planetocentric encounter

Phase H+
Heliocentric,

post-encounter

Switch of primary body
and reference frame

KEY QUESTION:
where to switch?
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Numerical analysis

● Performance assessment: large-scale numerical simulations in the 
planar, circular restricted Sun-Earth 3BP

● Parametrization of close encounters:

•   , minimum approach distance

•   , encounter eccentricity

•   , Sun-Earth-particle angle

● Heliocentric initial conditions are computed by backwards propagation Δt 
= 6 months before the encounter

● Total duration of the propagation: 2Δt = 1 year

t
i
 =  -Δt t

f
 =  Δt

H+ H-CE

t
CE

 =  0

Benchmark problem
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Numerical analysis (2)
Formulations and solver characteristics

● Comparison of propagation approaches:

• Cowell's method (EoMs in rectangular coordinates), in heliocentric frame

• Dromo regularized element methods with Online Trajectory Matching

• Different formulations used in each phase

● Solver: LSODAR subroutine from ODEPACK

• Multistep, implicit variable step-size and order numerical scheme

• Adams-Moulton scheme and Backward Differentiation Formulas

• Automatic root-finding capability (important for regularized formulations)

● Reference solution: computed in quadruple precision at very strict 
tolerance on the local truncation error, Cowell's method
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Numerical analysis (3)
Performance metrics

● Close encounters generally modify the heliocentric semi-major axis

●Accurate estimation of the SMA (equiv. period) is mandatory:

● resonant returns for NEAs may generate chaotic dynamics (Valsecchi 
et al., 2003)

● divergence of numerical error

●Error metric: relative energy difference,

●Computational cost metric: No. of right-hand side evaluations
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Propagation performance
Cowell's method, heliocentric frame, θ = 0º
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Propagation performance (2)
Regularized element methods with OTM, θ = 0º, R

sw
 = 4 R

SoI
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Propagation performance (3)
Where to switch? Impact of the switch radius on performance

Optimal switch radius: reduction of the average error of at least 1 order 
of magnitude with respect to Cowell's method, at half of the 

computational cost
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Apophis test case

● Application of the regularized+OTM methods: orbit propagation of  
NEA 99942 Apophis

● Simplified physical model (Sun-Earth CR3BP)

● Propagation from 2016 to 2056, with a deep close encounter in 2029

● Several orders of magnitude increase in accuracy with respect to 
Cowell's method with a variable order and step-size integrator.

● More details: G. Baù's talk, 14:40 March 16th in 3.02 Hassium
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Conclusions

● Novel regularized element methods are remarkably efficient 
in propagating weakly-perturbed orbits

● A new algorithm (OTM) increases accuracy of propagation 
in close encounters

● Three weakly-perturbed phases with distinct dynamics

● Significant improvement of propagation efficiency in 
the PCR3BP with the new methods

● Outstanding increase in accuracy for the propagation of 
Apophis' orbit
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Future work

● Expanded analysis of results in the PCR3BP:

➔ influence of θ (Sun-Earth-particle angle)

➔ comparison with further regularized formulations

● Comparative study between different numerical 
schemes (variable vs. fixed step-size)

● Improved methods for low-energy encounters and 
ballistic capture cases

● Publishing of the software in an online repository
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Vielen Dank für Ihre Aufmerksamkeit

Too close an encounter: impact of comet Shoemaker-Levy 9 on Jupiter as imaged by HST on 
July 20th 1994. Courtesy NASA/JPL.





Separation of dynamical regimes
Impact of the switch distance

● In Online Trajectory Matching, it is important to establish where/when to 
switch between phases

● … which is the primary body?

● Can the numerical error be minimized by choosing carefully the switch 
distance?

● Are the existing criteria (Tisserand/Laplace, Hill) sufficient for the 
purpose?
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