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ABSTRACT

Close encounters with major Solar System bodies may bring
about a strong amplification of numerical error during inter-
planetary orbit propagation. In this work, we reduce global
numerical error by integrating regularized equations of mo-
tion instead of the classical Newtonian equations in Cartesian
coordinates. The integration performance of several sets of
regularized equations is assessed from large-scale numeri-
cal propagations of close encounters in the Sun-Earth planar
CR3BP. An essential device consists in switching between
primary bodies during the propagation, which effectively
decomposes a strongly-perturbed heliocentric problem into
two weakly-perturbed ones; this propagation approach has
been dubbed Online Trajectory Matching (OTM). Through
this simple expedient, regularized equations describing the
evolution of non-classical orbital elements achieve excel-
lent performances compared to Newtonian equations, even
when employing sophisticated adaptive numerical schemes.
Further improvements might be expected by carefully select-
ing the location of the switch of primary bodies during the
propagation.

Index Terms— Close encounters, regularization, numer-
ical methods, special perturbations

1. INTRODUCTION

Accurately predicting the outcome of planetary close en-
counters is a momentous task in dynamical astronomy, which
finds critical applications in Space Situational Awareness and
spacecraft mission design.

Planetary close encounters are the only natural phe-
nomenon capable of modifying the orbit of a Solar System
object on a short heliocentric time scale. Their importance
in shaping the dynamics of the Solar System has resulted in
them being extensively studied in dynamical astronomy, and
several analytical techniques have been developed to predict
their outcome in terms of heliocentric orbital elements.

For instance, Öpik [1] developed a seminal technique
which is often used in statistical studies of asteroid and
cometary close encounters, and it has been used to discover
by purely dynamical means the existence of a period of Late
Heavy Bombardment in the history of the Inner Solar System.
His work was later expanded by Valsecchi et al. to non-zero
minimum approach distances and small inclinations [2, 3].
This theory is now widespread for the prediction of encounter
outcomes by Near-Earth Asteroids (NEAs) and possible res-
onant returns.

However, analytical theories do not allow to reach very
high accuracies due to the approximations involved. If high
accuracies are required, it is necessary to resort to special per-
turbation techniques. Even in this case some care is needed
in numerical propagations, since a close encounter will in-
evitably compromise the quality of a solution if not properly
taken into account. A widely adopted technique is to employ
an adaptive numerical scheme, that is one which is capable
of modifying its step size and/or its order as to minimize the
local truncation error on the basis of some criterion, e.g. the
instantaneous estimation of the eigenvalues of the Jacobian of
the equations of motion [4].

Another common approach used to increase the numer-
ical efficiency, which stems from the field of dynamical as-
tronomy, is to integrate regularized equations of motion, i.e.
equations from which the singularity for r “ 0 has been elim-
inated through analytical means [5]. If the problem is weakly
perturbed, further advantages can be obtained by integrating
equations of motion relative to orbital elements, which evolve
quite smoothly under the action of small perturbations. This
last approach has already proven to improve the accuracy in
the propagation of resonant close encounters [6].

In this work, we are concerned with improving the quality
of numerical propagations of interplanetary close encounters
by applying the aforementioned techniques. In particular, we
will assess the efficiency of integrating close encounters with
a family of two regularized element methods of the Dromo
family [7, 8], which have shown excellent numerical perfor-



mances and whose main features are presented in Section 2
along with the main characteristics of regularized formula-
tions of dynamics. The physical model used to reproduce
close encounters is described in Section 3. Section 4 deals
with the propagation strategy devised to increase the propa-
gation efficiency of the Dromo element methods. The propa-
gation error and computational cost metrics used for the study
are described in Section 5. The performance analysis of the
regularized formulations compared to the integration of the
Newtonian equations (Cowell formulation) is carried out in
Section 6. The conclusions of the study are summarized in
Section 7.

2. REGULARIZATIONS AND ELEMENT METHODS

The Newtonian equations of motion in Cartesian coordinates
in the presence of a perturbing acceleration F ,

:r “ ´
µ

r3
r ` F , (1)

present a singularity at collision (r “ 0) which poses a bur-
den for numerical integration. Even if the singularity is never
actually reached, we can expect the solution to vary strongly
when close to it. Therefore, it is difficult to approximate the
solution by a numerical method in this situation, and accuracy
(or computational time) will be inevitably affected. Also, ev-
ery elliptic solution of (1) is unstable in the Lyapunov sense,
which is unfavourable for the propagation of numerical er-
ror [9].

2.1. Regularization of the equations of motion

The issues connected to the presence of the singularity for r “
0 may be avoided by regularizing the equations of motion,
that is eliminating the singularity for r “ 0. This is achieved
analytically in two steps. Firstly, the independent variable
is changed from the physical to a fictitious time through a
differential relation, the Sundman transformation. Secondly,
one or more integrals of motion are embedded into the equa-
tions [10]. The resulting set of equations is often redundant,
that is the number of first-order ODEs is greater than the num-
ber of degrees of freedom of the particle. Even with this pe-
nalization, regularization is still beneficial for numerical inte-
gration due to the elimination of the singularity and the ana-
lytical stabilization of the equations of motion [5].

One practical aspect regarding the implementation of reg-
ularized equations in an orbit propagation software deserves
further attention. In most practical cases, the propagation has
to be stopped at one or more values of the physical time t˚.
However, in regularized formulations the physical time is a
function of the fictitious time s, i.e. it is effectively one of
the state vector variables. Therefore, the value s˚ of the fic-
titious time which satisfies t˚ “ tps˚q must be found by an
iterative process during or after the propagation [11]. This is

an important requirement driving the choice of the numerical
solver.

2.2. Element methods

One beneficial effect of regularization is to replace Equa-
tion (1) by linearized differential equations with coefficients
which are constant in the unperturbed two-body problem.
By applying the variation of parameters technique to these
linearized equations it is possible to introduce first-integrals
of the two-body problem. These new quantities, which are
called orbital elements, can be used as state variables instead
of the position and velocity. If the motion is weakly perturbed
(which occurs commonly in astrodynamics) the solution ex-
pressed in terms of elements will deviate from the constant
part on a slow time-scale. This enables a numerical integrator
to take larger step sizes and therefore increase the propagation
efficiency.

Not all element methods are suitable for any orbit type. In
fact, some of them are particularized only for a given type of
orbit, i.e. only for a given sign of the eccentricity or the total
orbital energy.

Besides the classical (Keplerian) orbital elements, sev-
eral other element sets have been developed, along with their
equations of motion. A survey of element methods is avail-
able in Ref. [12].

2.3. Comparison of dynamical formulations

The formulations that we compared in the present work are
summarized in Table 1, which gives the kind of state vari-
ables used (coordinates or elements), the type of orbit that
can be described, and the number of ODEs to be solved in
each formulation for a 3-dimensional problem.

The Kustaanheimo-Stiefel (K-S) regularization is one of
the best known in dynamical astronomy; it is extensively de-
scribed in the work by Stiefel and Scheifele [5].

In this formulation, the state of the particle is expressed
through a 4-dimensional vector u which is the solution of a
perturbed harmonic oscillator. The state vector is composed
by ten quantities: the components of u and 9u, the total energy
and the physical time.

EDromo and HDromo are two regularized element for-
mulations which are closely related to a special perturbations
method originally developed by Peláez et al. [13]. In this
method, called Dromo, the orbital motion is described by the
physical time and 7 spatial elements. These are the inverse
of the angular momentum, two projections of the eccentric-
ity vector along the axes of an ideal reference frame, and the
components of a unit quaternion which describes the instan-
taneous orientation of this frame. EDromo and HDromo are
restricted to negative and positive signs of the total orbital en-
ergy respectively. They also use a set of 7 orbital elements,
three of which express the size and shape of the orbit and



Table 1: Formulations used in the work. “Cowell” refers
to the numerical integration of the unregularized Newtonian
equations, Equation (1). The quantity ε denotes the total en-
ergy, i.e. the sum of the Keplerian energy and the disturbing
potential energy.

Formulation Type Orbit ODEs

Cowell Coord. Any 6
Kustaanheimo-Stiefel Coord. Any 10
EDromo Elem. ε ă 0 8
HDromo Elem. ε ą 0 8

the remaining four constitute a quaternion, in analogy with
Dromo. However, the adopted fictitious time is fundamen-
tally different and a perturbing potential is introduced [7, 8].

3. PHYSICAL MODEL

As a benchmark model, we took the Sun-Earth planar, circu-
lar, restricted three-body problem (PCR3BP). The only per-
turbation is due to the gravitational attraction of the secondary
body, so that the perturbing acceleration F in Equation (1) is
expressed as

F “ ´µ1
ˆ

d

d3
`
ρ

ρ3

˙

, (2)

where µ1 is the gravitational parameter of the secondary body
and d, ρ are the vectors from the primary body of attraction
to the particle and to the perturbing body, respectively. The
Sun and the Earth may switch roles as primary bodies dur-
ing the propagation, according to the algorithm described in
Section 4.1.

3.1. Close encounter parametrization

We assume that the close encounter takes place at time t “
0. Each propagation is parametrized by three quantities that
completely define the close encounter. These are:

• d, the minimum approach distance;

• e, the eccentricity of the geocentric hyperbola at the
minimum approach distance (e ą 1);

• θ, the angle between the geocentric position vector at
the minimum approach distance d and the Sun-Earth
direction.

Two more parameters describing the hyperbolic encounter
are of particular interest: the asymptotic velocity U and the
asymptote angle ϕ. By the vis-viva and conic equations, we
obtain U and ϕ from d and e as

U “

c

µC

d
pe´ 1q, (3)

cosϕ “
1

e
. (4)

The encounter energy ε ą 0 increases with U since ε “
U2{2. In this sense, we speak equivalently of high- (low-)
energy and fast (slow) encounters. Note that increasing d re-
sults in decreasing the asymptotic velocity, but does not affect
the asymptote angle. Increasing e increases both the asymp-
totic velocity and the asymptote angle ϕ, 0 ă ϕ ă π{2. High
encounter eccentricities correspond to hyperbolas which tend
to be rectilinear, and to smaller deviation angles.

We consider a heliocentric reference system tO, x, yu
such that at t “ 0 the Earth lies on the x´axis, at a dis-
tance of 1 au. The initial angle θ determines the orientation
of the encounter in this frame. More specifically, varying θ
changes the orientation of the incoming and outgoing geocen-
tric asymptotic velocity vectors U´,U` with respect to the
Earth’s heliocentric velocity vector vC, as shown in Figure 1.
The angle between U´ (equivalently, U`) and vC strongly
affects the variation in the heliocentric orbital energy of the
particle due to the close encounter.

Under the hypotheses of the matched-conics approxima-
tion [14], it is possible to derive analytically the pre- and
post-encounter heliocentric orbital elements corresponding to
given values of pd, e, θq. This allows us to write the pre- and
post-encounter heliocentric orbital energies ε´, ε` as a func-
tion of the close encounter parameters in a compact manner,

ε¯ “
U2 ´ v2C

2
` UvC sinpϕ˘ θq, (5)

where the upper sign refers to the pre-encounter energy ε´. It
is important to highlight that while θ does not affect the type
of geocentric trajectory, it does have an impact on the helio-
centric orbital elements. In particular, both open and closed
heliocentric orbits might correspond to a given pair pd, eq, de-
pending on the value of θ. Also, the variation in the heliocen-
tric orbital energy can be written as

∆ε “ ε` ´ ε´ “ ´2UvC sin θ cosϕ. (6)

Therefore, ∆ε varies with sin θ. Values of θ “ 0˝ or 180˝

imply very similar pre- and post-encounter heliocentric orbits,
which simplifies the analysis of the numerical experiments.
The most violent close encounters (highest ∆ε) are obtained
with θ “ 90˝, 270˝.

4. PROPAGATION METHODOLOGY

We propagated interplanetary trajectories characterized by
only one close encounter using two different approaches. In
the first, the whole integration of the equations of motion is
carried out in a heliocentric reference system, with the Sun as
the primary body and the Earth as a perturber. In the second,
the main gravitational body is switched from the Sun (Earth)
to the Earth (Sun), when the geocentric distance of the prop-
agated body becomes smaller (greater) than a given “switch



Sun

d

θ

ϕ

ê
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Fig. 1: Kinematics of the close encounter at t “ 0 (scale
exaggerated for clarity). The asymptotic velocity vectors at
entry in and exit from the close encounter are designated with
U´, U`, respectively. The eccentricity vector is designated
with e. The asymptotes of the hyperbolic trajectory are rep-
resented with dashed lines.

radius” Rsw. The rationale behind this approach, which we
dubbed “Online Trajectory Matching” (OTM), will become
apparent in Section 4.1.

We highlight that the focus of the study is to compare dif-
ferent dynamical formulations, that is different sets of ODEs
representing the physical model in question. It is not our aim
to compare different numerical solvers, which consist of the
algorithms (numerical scheme, local truncation error control,
step-size and order control, . . . ) used to solve such sets of
ODEs. In fact, the problem of finding the numerical solver
which best fits a dynamical formulation is still open and de-
serves further work [9]. In all the numerical tests presented
here we adopted the same numerical integrator, whose char-
acteristics are described in Section 4.2.

4.1. Online Trajectory Matching (OTM)

Online Trajectory Matching (OTM) is a simple algorithm
aimed at increasing the computational efficiency of element
methods in interplanetary orbit propagations with close en-
counters. Such methods perform well for weakly perturbed
problems, while close encounters introduce a strong, impulse-
like perturbation on a heliocentric scale. OTM decomposes
the strongly-perturbed heliocentric problem with a close
encounter in three weakly-perturbed phases, with distinct
dynamics:

1. Phase H- (heliocentric, pre-encounter): the Sun is the
primary body and the planet is the perturbing body; the
motion is referred to the Sun.

2. Phase CE (close encounter/planetocentric): the planet
is the primary body and the Sun is the perturbing body;

the motion is referred to the Earth.

3. Phase H+ (heliocentric, post-encounter): same dynam-
ics as phase H-.

The propagation starts in phase H-, and it is carried out until
the geocentric distance R satisfies the switch criterion R ď

Rsw, where Rsw is the pre-defined switch radius. At this in-
stant, we pass from phase H- to phase CE and both the state
vector and the numerical scheme are re-initialized. The prop-
agation continues in phase CE (planetocentric) until we have
R ě Rsw; the motion is then referred again to the Sun until
the final time of the propagation or a potential next encounter.

The algorithm is analogous to the matched-conics method,
however in OTM the PCR3BP is preserved along the whole
propagation, i.e. no two-body approximation is made. More-
over, the increase of the magnitude of the gravitational per-
turbation as the particle is approaching the Earth can be
contained by considering the appropriate reference system
for each phase of the propagation.

The OTM algorithm also allows to use a different formu-
lation for each phase, which can increase the overall propaga-
tion efficiency [6].

4.2. Solver

The solver used in all the numerical experiments is the
LSODAR Fortran subroutine. It is part of the ODEPACK
library, whose Fortran 77 codes are freely available online1.

LSODAR is a numerical solver with dense output us-
ing two multistep and implicit numerical schemes of the
predictor-corrector type, namely the Adams-Moulton (AM)
and the backward differentiation (BDF) formulas [15]. The
latter scheme is used in case that LSODAR detects that a
problem is becoming stiff [16]; for non-stiff problems and for
initializing the integration LSODAR uses the AM formulas.
Due to stability considerations, the order of the methods is
limited to 12 for the AM formulas and 5 for the BDF.

Both the step size and the order of these schemes vary
during the integration depending on the instantaneous esti-
mate of the local truncation error. This characteristic is par-
ticularly important when propagating without OTM, since it
allows the solver to accommodate the sharp increase in per-
turbations caused by a close encounter.

An appealing characteristic of this solver is its root-
finding capability. Let ypsq be the vector solution, function of
the independent variable s. At each step, LSODAR searches
for the roots of a user-assigned set of algebraic equations
gpy, sq “ 0 through a bisection method [17]. If a root s˚ is
found for one of the equations, the integration stops and the
output y˚ “ yps˚q is returned to the user. As explained in
Section 2.1, a root-finding capability is mandatory if output is
needed at user-assigned values of physical time. In our case,

1https://computation.llnl.gov/casc/odepack/

https://computation.llnl.gov/casc/odepack/


Fig. 2: Relative energy error as a function of the minimum
approach distance (d) and the eccentricity of the geocentric
hyperbola (e) for the Cowell formulation. We set θ “ 0˝

(Section 3.1), tol = 10´6 (Section 6.1). Isolines of the en-
counter energy are shown in red and are labelled with the cor-
responding value of the asymptotic velocity U in km/s. The
locus of parabolic heliocentric orbits (ε¯ “ 0q is indicated by
a black line. The distance d is in Earth radii.

the root-finder was also used to check the fulfilment of the
switch criterion in the OTM algorithm.

5. PERFORMANCE METRICS

The most critical orbital element to be propagated during a
close encounter is the heliocentric energy, or equivalently the
semi-major axis. This is because errors in semi-major axis
will produce errors in the period, thus leading to a secular
growth of the positional error. Because of this, we took as an
accuracy metric the relative difference between the reference
and test heliocentric energies,

δε “

ˇ

ˇ

ˇ

ˇ

εtest ´ εref
εref

ˇ

ˇ

ˇ

ˇ

, (7)

evaluated at the end of the propagation time span.
We took the number of evaluations of the right-hand side

of the equations of motion as a metric of computational effort.
This measure is independent from the particular machine used
or implementation of the software. It also provides a good
estimation of the required computational time when complex
physical models are used, as is often the case in numerical
propagations.

6. NUMERICAL ANALYSIS

We evaluated the performance of the formulations in Table 1
by propagating a large set of close encounters parametrized

Fig. 3: Relative energy error as a function of pd, eq for the
Kustaanheimo-Stiefel formulation. We set θ “ 0˝, tol =
10´6. The locus of parabolic heliocentric orbits (ε¯ “ 0q is
indicated by a black line. The distance d is in Earth radii.

in pd, e, θq. In the following sections, we will describe the
set-up of the numerical experiments and analyse the results
from propagations carried out both with and without using
the OTM algorithm. Moreover, we analysed the performance
impact of different criteria for switching between the helio-
centric and planetocentric phases when the OTM algorithm is
used.

6.1. Numerical set-up

For each set of parameters pd, e, θq we obtained a reference
solution covering a time span ∆t “ 6 months before and af-
ter the encounter. This solution was computed in quadruple
precision using the Cowell formulation in heliocentric coor-
dinates, with the relative and absolute tolerances of the solver
set to 10´23.

The performance of the aforementioned propagation
methodologies was evaluated by running “test” propaga-
tions which start six months before the encounter time and
are stopped six months after the encounter. Therefore the
total duration of the propagations is fixed to 1 year. The
choice of the time span ∆t is a compromise between two
limiting factors. On one hand, an inferior limit to ∆t must be
set to allow some accumulation of numerical error before the
encounter. On the other hand, the time interval ∆t cannot be
too large, otherwise the final numerical error would be mainly
due to the accumulation during the heliocentric phases and
not to the close encounter itself, thus defying the purpose of
the analysis. Moreover, a large ∆t increases the probability
of experiencing one or more close encounter after the first,
which would unnecessarily complicate our study.

Each “test” propagation was performed in double preci-
sion. The relative and absolute tolerances of the solver al-



Table 2: Relative energy error and total number of right-hand-side evaluations averaged over the pd, eq plane for the Cowell
(Cow), Kustaanheimo-Stiefel (K-S) and EDromo (EDr) formulations without the Online Trajectory Matching described in
Section 4.1.

Avg. error Avg. evals

tol θ p˝q Cow K-S EDr Cow K-S EDr

10´6 0 3.84ˆ 10´3 2.01ˆ 10´4 2.23ˆ 10´3 374 386 979
10´6 90 6.46ˆ 10´3 5.38ˆ 10´4 4.48ˆ 10´3 404 374 870
10´12 0 8.36ˆ 10´9 2.82ˆ 10´9 7.87ˆ 10´9 1330 1436 3281
10´12 90 1.21ˆ 10´8 1.47ˆ 10´8 2.00ˆ 10´8 1507 1345 3129

ways have the same values: rtol “ atol “ tol “ 10´6

or tol “ 10´12.

6.2. Performance analysis in heliocentric propagations

The propagation accuracy of the Cowell and Kustaanheimo-
Stiefel formulations can be assessed from Figures 2 and 3,
which show the relative error in the final heliocentric energy
as a function of pd, eq for θ “ 0˝. As to interpret the plots,
one must remember that each point in the pd, eq plane corre-
sponds to a different set of pre- and post-encounter heliocen-
tric orbital elements. Most importantly, the pre- and post-
encounter heliocentric orbital energies are equal under the
matched-conics approximation and increase with U , as fol-
lows from Equation (5). The black line in both of the fig-
ures divides the pd, eq plane in two regions: the one above
the line corresponds to hyperbolic heliocentric orbits and the
other one to elliptic heliocentric orbits. Points in the right part
of the plane, corresponding to shallow close encounters with
low perturbing accelerations, have low error values. As ex-
pected, when going towards lower values of d the magnitude
of the error increases, especially with the Cowell formulation.
Moreover, for both Cowell and Kustaanheimo-Stiefel, the en-
counters that occur closer to the Earth are propagated less ac-
curately when moderate Earth-particle relative velocities are
involved. The error growth in this regime is only partially
mitigated by the type of propagation method and the solver’s
adaptive numerical scheme.

For both formulations, the error magnitude exhibits quite
steep variations (up to two orders of magnitude) for neigh-
bouring close encounter conditions. This is due to the adap-
tive scheme employed by the solver; when going from a
higher to a lower error region through these “error jumps”,
LSODAR increases the order of the numerical scheme as to
satisfy the internal constraints on the local truncation error.
The loci of these jumps closely match the isolines of the en-
counter energy. As it is evident from Figure 4 this behaviour
appears also when using other formulations, thus it seems to
be completely related to the type of solver used.

In Figures 2 and 3, the steep increase in the error mag-

nitude around the locus of parabolic heliocentric orbits is an
artefact of the particular error metric used, since ε`ref « 0
in that region. The error in the hyperbolic region is greater
than the one in the elliptic region for both formulations, how-
ever this error increase is more contained for Kustaanheimo-
Stiefel. In general, this last formulation achieves lower error
values in the whole pd, eq plane, confirming the advantages of
integrating regularized equations even when using an adaptive
numerical scheme.

It was also interesting to investigate the performance of
the EDromo regularized element formulation, without apply-
ing any switch of the primary body during the propagation.
The formulations were compared by looking at the relative
energy error and the total number of evaluations of the right-
hand side of the equations of motion. For a given value of
θ, we averaged both these quantities over the region pd, eq “
r1, 20sRCˆr1.01, 15s of the parameter space. For fairness of
comparison, we excluded from the averaging the pairs pd, eq
corresponding to hyperbolic heliocentric orbits, since these
were not propagated with the EDromo formulation.

Table 2 shows the results for tol “ 10´6, 10´12 and
θ “ 0˝, 90˝. The Kustaanheimo-Stiefel formulation exhibits
the best efficiency for a tolerance of 10´6, and it reduces the
error by one order of magnitude with respect to the Cowell
formulation. This advantage is somewhat mitigated for the
tighter tolerance 10´12. Integrating the EDromo equations
allows to reach accuracies which are comparable or lower
than Cowell’s, however this is to the expense of the number
of evaluations. The increase in the number of right-hand-side
evaluations signals more effort spent by the numerical scheme
to follow the perturbations with the requested accuracy; the
adoption of the OTM algorithm to reduce the perturbing ac-
celeration magnitude is then justified.

6.3. Performance analysis with OTM

The Online Trajectory Matching was applied in combination
with the regularized element methods in Table 1: EDromo
was used to propagate the heliocentric phases H-/H+, while
HDromo was used for the hyperbolic phase CE. This is possi-



Fig. 4: Relative energy error as a function of pd, eq for the
regularized element methods EDromo, HDromo with the On-
line Trajectory Matching (Section 4.1). We set θ “ 0˝, tol =
10´6, Rsw “ 5.53RSoI. Hyperbolic heliocentric trajectories
were not propagated. The distance d is in Earth radii.

ble since the three phases are completely independent from
each other; the integration is restarted at the beginning of
phases CA/H+ from the final conditions reached at the end
of the previous phase.

Figure 4 displays the magnitude of the relative energy er-
ror at the end of the propagations using OTM and regularized
element methods for the same θ and tol of Figure 2. The
switch radius was set at Rsw “ 5.53 RSoI, where RSoI “

aC pµC{µ@q
2{5

« 925000 km is the radius of the Earth’s
sphere of influence. As it will be shown in the next Section,
this choice allows to obtain a lower average error with respect
to the case Rsw “ 1RSoI.

By comparing the two figures we notice that this propa-
gation strategy allows to reduce the final relative energy error
by about two orders of magnitude with respect to Cowell. The
performance of the element methods when combined with the
OTM strategy is substantially improved with respect to the
purely heliocentric propagation carried out with EDromo (Ta-
ble 2). This is due to the fact that by employing OTM we are
effectively decreasing the perturbation magnitude during each
phase of the propagation.

The error behaves in a way similar to the Cowell and
Kustaanheimo-Stiefel formulations. Bigger errors are still
reached for encounters that occur closer to the Earth. Among
them the most difficult to propagate are those characterized
by higher energies, i.e. faster encounters. However, the per-
formance is more satisfactory in this region.

The white area in the top left of the plot is relative to hy-
perbolic heliocentric orbits. Since the method used in phases
H-/H+ works for negative values of the total energy, it was not
possible to propagate this set of initial conditions. This issue

can be easily solved by using an appropriate method depend-
ing on the sign of the total energy. Nevertheless, we chose to
consider only the set of points pd, eq corresponding to ellip-
tic orbits since it contains the most interesting cases from the
standpoint of Space Situational Awareness, with orbit charac-
teristics similar to those of NEAs.

6.4. Impact of the switch criterion in OTM

We conclude our analysis by looking at a subtle aspect of On-
line Trajectory Matching which deserves some attention. Up
to now, we have implied that the switch between the different
phases takes place at a pre-defined planetocentric “switch ra-
dius”Rsw, but we have not mentioned any criterion leading to
its choice. Several criteria for distinguishing between the re-
gions of gravitational influence attaining to different celestial
bodies exist in the literature; the most widely known are the
Hill sphere and the Laplace sphere of influence. However, we
remind that our study is aimed at minimizing the final prop-
agation error at the end of the numerical integrations; finding
a criterion which guarantees such objective is not trivial. Ide-
ally, it should allow to decrease the magnitude of the perturb-
ing accelerations, thus reducing the global numerical error.
This task is complicated by the particularities connected with
using regularized formulations and element methods.

As a first step in this direction, we carried out the propa-
gations in the region pd, eq “ r1, 20sRC ˆ r1.01, 15s for dif-
ferent values of the switch radius. The relative energy errors
and the corresponding number of right-hand-side evaluations
were averaged over all the considered points pd, eq. The re-
sulting values are shown in Figures 5 and 6 for several switch
radii. These figures were obtained by setting tol “ 10´6

and θ “ 0˝, 90˝ respectively. The switch radius has a rele-
vant impact on the final propagation error, as in some cases
different values of Rsw give origin to variations of up to one
order of magnitude in δε (Figure 6a). Moreover, the switch
radius which minimizes δε is not always located at 1RSoI, and
it depends on θ. In fact, for θ “ 0˝ the average error can be
reduced by a factor of 3 by switching primary bodies at 7RSoI

instead of at 1RSoI. A switch criterion based on purely dy-
namical considerations, such as the Laplace sphere of influ-
ence, does not guarantee the best numerical performances in
our approach.

Another requirement driving the choice of the switch ra-
dius regards the reliability of the integration. Both the formu-
lations chosen in the propagations with the OTM algorithm
are particularized to either negative or positive total energy,
and lose meaning if this sign changes during the propaga-
tion. In this paper, all the close encounters occur on hyper-
bolic geocentric trajectories. Besides, heliocentric arcs are
elliptical. However, we noticed that in some cases, especially
when the close encounter is extremely slow, the total energy
computed along the geocentric trajectory changes sign (i.e.
becomes negative) when the propagated body is far from the



(a) Relative energy error (b) Right-hand-side evaluations

Fig. 5: Average relative energy error and number of right-hand-side evaluations as a function of the switch radius Rsw. We set
θ “ 0˝, tol “ 10´6. The blue curve refers to the regularized element methods EDromo, HDromo with OTM. The green and
orange lines refer to the Cowell and Kustaanheimo-Stiefel formulations in the heliocentric system. These lines represent the
values reported in Table 2. The dashed red line corresponds to the smallest switch radius for which at least one pair pd, eq leads
to a change of sign of the total energy in the geocentric phase.

(a) Relative energy error (b) Right-hand-side evaluations

Fig. 6: Same as in Figure 5, for θ “ 90˝, tol “ 10´6.

Earth. In such cases the propagation stops, since the formula-
tion which is being used in this phase works for strictly posi-
tive values of the total energy. This happens more frequently
the higher the switch radius, or equivalently the longer the CE
phase. This is easily understood from the dynamical stand-
point, since the motion for distances sufficiently far from the
Earth is actually dominated by the Sun and thus the geocentric
energy exhibits very strong variations. In Figures 5 and 6 we
have marked the first value of Rsw for which there is at least
one pair pd, eq which leads to this phenomenon. The points
pd, eq producing this change of sign of the total energy were
not counted in the averaging computation of the error and of
the vector field evaluations.

The dependence of the computational cost on the switch
radius is very weak. In any case, the approach using regular-
ized element methods with OTM exhibits a number of right-
hand-side evaluations which is four times smaller than that
of the Cowell and Kustaanheimo-Stiefel formulations, while
maintaining an average error which is comparable to that of
the K-S.

7. CONCLUSIONS

In this work, we assessed the computational efficiency of
novel propagation techniques of interplanetary trajectories
with close encounters.

The behaviour of the regularized element methods EDromo
[7] and HDromo [8] was investigated by performing large-
scale numerical simulations in the planar CR3BP. We in-
cluded in our analysis also the Cowell formulation (i.e. the
unregularized equations of motion for rectangular Cartesian
coordinates) and the Kustaanheimo-Stiefel formulation. The
numerical integrator employs variable step-size and order
multistep numerical schemes.

If the propagation is carried out in a heliocentric refer-
ence system the Kustaanheimo-Stiefel formulation gives the
best efficiency, achieving a value of the final propagation error
which is up to one order of magnitude lower than the Cowell
formulation with the same computational cost.

A novel algorithm, Online Trajectory Matching, was de-
vised to decompose the strongly-perturbed heliocentric close
encounter problem in three weakly-perturbed phases, asso-



ciated with three propagation phases: pre-encounter (helio-
centric), encounter (planetocentric) and post-encounter (he-
liocentric). This algorithm greatly increases the efficiency
of the propagation when using regularized element methods,
given that the planetocentric distance at which the primary
body is switched is chosen carefully.

With the proposed approach, it is possible to achieve the
same accuracy as the Kustaanheimo-Stiefel formulation but
with a computational cost four times smaller.
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of propagation error in interplanetary trajectories,” Adv.
Astronaut. Sci., vol. 155, pp. 1003–1020, 2015.
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[8] G. Baù, D. Amato, C. Bombardelli, and A. Milani,
“New orbital elements for accurate orbit propagation
in the solar system,” in Proceedings of the 6th Inter-
national Conference on Astrodynamics Tools and Tech-
niques (ICATT). European Space Agency, 2016.

[9] H. Urrutxua Cereijo, High Fidelity Models for Near-
Earth Object Dynamics, Ph.D. thesis, Technical Uni-
versity of Madrid, School of Aeronautical Engineering,
Madrid, Spain, 2015.

[10] V.R. Bond and M.C. Allman, Modern Astrodynamics:
Fundamentals and Perturbation Methods, Princeton
University Press, Princeton, NJ, USA, 1996.

[11] J. Geul, E. Mooij, and R. Noomen, “Regularised meth-
ods for high-efficiency propagation,” in Proceedings
of the 2015 AAS/AIAA Specialist Conference, Vail, CO,
USA, 2015, American Astronautical Society.

[12] G.R. Hintz, “Survey of orbit element sets,” J. Guid.
Control. Dynam., vol. 31, no. 3, pp. 785–790, 2008.
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