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Thermospheric wind overview

50 10 150 200 250m/s
Thermospheric wind at 2560 km according to the HWM93 model
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Existing methods

Existing methods:

 Remote sensing:
* |nterferometer
* |ncoherent Scatter Radar

* In-situ:
 Chemical tracer
* Accelerometer based -
(Doornbos 2010)
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Concept:
« Estimate the thermospheric wind

by observing the attitude I
evolution. I
- \_[

» Aerostable spacecraft, which S

exhibit a restoring torque are used /&

as their attitude oscillates around / X
the equilibrium point. ‘ %

. nami
KnOWIG.dge on the aerOdy a , c Prototype of a highly aerostable
properties and the atmospheric CubeSat that could be used to
density Is required. measure thermospheric wind
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Aerostable Spacecraft

Aerodynamic Torques:

Atmospheric ~ Reference Area
density and Length

1\ , LN
Taero — _p‘/} \A’élff“eflrefcv’ll1 >

7 : A 3 3
Aerodynamic , Torque |
torque Relative flow /' coefficient | |
velocity FESE R
Aerostable spacecraft: / 1 .
Taero — —( f (6 Sf) Linear simplification
Generic aerostable behavior —_—
Taero — qkesf
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Spacecraft Dynamics

One rotational degree-of-freedom simplification:

Aerostable spacecraft behave as harmonic oscillators.
k is the aerodynamic stiffness.

Natural frequency:

qk
W =1/ —
I
* |n-track and cross-track wind components

|/

S ="wd +wE — V>

w
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Iterative Approach |

— 1 A \2 D)
Iterative approach (cross-track): 4= 5P ((Vz' + ;)" + ?ﬂc)
!
* |terate to measure cross-track wind. — ) |Gk \
W =1/
I
* In-track wind must be known 1.
. i 2 R 0
Set it to 0 i = — +0 /
w
 How to minimize the error due to Al X
unknown w;? ) e = (Vi + w;) tan (Hszw)
ow, — we 20 —
8wi N V; + w; w2
} w2 W, W W, Two measurement
0 = 2 (V; + w;) ~ 2V, opportunities per oscillation
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Iterative Approach I

gm—

Iterative approach (in-track):
* |terate to measure in-track wind.
 Cross-track wind must be known

e How to minimize the error due to
unknown w,?

Maximum HHH

N

Two measurement
opportunities per oscillation
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Iterative Approach Il

Iterative approach:

In-track Attitude oscillation
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Iterative Approach |V

-
Summary of iterative approach:

* Both iterative procedures are executed in parallel interpolating
the in-track and cross track wind results.

* The procedure is then iteratively repeated until it converges
(processed offline).

« Two measurements per cycle of cross-track and in-track wind.

« Angular acceleration and atmospheric density are required.
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Frequency approach

Frequency approach:

* Assumes that wind is constant during oscillation.
» Measure oscillation period 7.
* Measure attitude 6 during maximum angular rate 6y 4x.

2w |21

We = sin (eémax) T ,OIC

01 = €05 (Oj) -\ o~ V

« Simpler but more sensitive to timing - lower performance.
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Spatial Resolution:

« Measurement frequency

sets the spatial resolution.
27V;
d = mV ~ 2T g
W pk

« Wind variability should be
below spacecraft natural
frequency.
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Spatial Resolution for the proposed
CubeSat design.
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|deal performance

Ideal performance of iterative approach 1 Hz
measurement (no uncertainties):
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Multidimensional case

|
Multidimensional case:

« Use full Euler rotational equation.

* Requires aerodynamic model taero = —qf(0s¢)

* Needs a function that finds attitude with respect to
the flow based on model 8¢ = f ™ (—=Tgero/q)

« Example using proposed CubeSat with:
* 10% 30 p
* 5% 30 on aerodynamic properties
* k=0.17 Nm/rad s BCT Star tracker CubeSat (5Hz)

* 09, = 40 arcsec (1o)

* o0,=2 arcsec/sz (]_0-) — TVlef (Chartrand 201 1)
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Wind [m/s]
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Estimated performance

Estimated performance (with proposed CubeSat):
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Dominated by accuracy on the density.
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Conclusions

Conclusions:

Observing the attitude evolution of aerostable spacecraft can
yield wind measurements.

High aerodynamic stiffness increases spatial resolution and
the overall method accuracy.

A separate source of atmospheric density is required.
In-track wind Is less observable.

Can be used as a complement of other wind measurement
techniques.
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Questions

Thank you for your attention.
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