

DESIGN AND PARAMETER IDENTIFICATION BY LABORATORY EXPERIMENTS OF A PROTOTYPE MODULAR ROBOTIC ARM FOR ORBITING SPACECRAFT APPLICATIONS.

Dr. Josep Virgili Llop, NPS-Mechanical and Aerospace Engineering
 CPT. Jerry V. Drew II, NPS-Mechanical and Aerospace Engineering
 Prof. Marcello Romano, NPS-Mechanical and Aerospace Engineering

Outline

- Motivation
- Modular Robotic Manipulator
- Kinematic and dynamic calibration procedure
- Workspace and Manipulability

Motivation

ROBOTICS

- Space robotics are useful to many missions (servicing, ADR, ...).
- Complex dynamics with added basemanipulator coupling.
- Trend towards smaller spacecraft.

Need for a test bed where to evaluate GNC approaches and rehearse mission scenarios.

ETS-VII (1997)

DARPA's orbital express (2007)

Dynamic HIL Testing of S/C Maneuvering

Roto-translational maneuvering

RT 1) Floating in neutral buoyancy pools

COLMASA-JSC

RT 2) Floating over horizontal surfaces via flat air-bearing per vehicle: {typical: 3dof, R²x R,~10⁻³ g}, {also possible: 5dof, R²x SO(3)}

per vehicle: {dof: 6, motion type: SE(3), residual dist.: ~10⁻¹ g}

Rotational (attitude) maneuvering

Floating spherical air-bearing, a.k.a. dynamic three axis simulator {3dof, SO(3), ~10⁻³ Nm}

Application: experimental V&V of: RT GN&C algorithms, MB & contact dynamic model, actuators/sensors H/W and S/W (& university education!)

NPS- Floating Spacecraft Simulator Test Bed

NPS

ROBOTICS

Modular Manipulator Architecture and Design (1/2)

- Completely modular design.
 - Combination of Harmonic drive motor, encoder and driver (max of 1.8 Nm).
 - Torque sensor (enables compliant control).
 - Power system (battery and power regulator)
 - Microcontroller and TCP/UDP communications.

Parameter Identification (1/4)

Kinematic Calibration → Batch Least Square Kinematic models determines end-effector location

 $\begin{aligned} x_{EE} &= k \left(\theta, \theta_0, a, x_{\mathcal{B}\mathcal{J}_1}, y_{\mathcal{B}\mathcal{J}_1}, \theta_{\mathcal{B}\mathcal{J}_1} \right) \\ \text{Batch Least Square} \\ \Delta x_{EE} &= \Phi_k \Delta \xi_k \\ \Delta \xi_k &= \left(\Phi_k^T \Phi_k \right)^{-1} \Phi_k^T \Delta x_{EE} \\ \\ \Phi_k &= \left[\begin{array}{ccc} \frac{\partial k}{\partial \theta_0 _1} & \frac{\partial k}{\partial a_1 _1} & \frac{\partial k}{\partial x_{\mathcal{B}\mathcal{J}_1 _1}} & \frac{\partial k}{\partial y_{\mathcal{B}\mathcal{J}_1 _1}} & \frac{\partial k}{\partial \theta_{\mathcal{B}\mathcal{J}_1 _1}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial k}{\partial \theta_0 _s} & \frac{\partial k}{\partial a_s} & \frac{\partial k}{\partial x_{\mathcal{B}\mathcal{J}_1 _s}} & \frac{\partial k}{\partial y_{\mathcal{B}\mathcal{J}_1 _s}} & \frac{\partial k}{\partial \theta_{\mathcal{B}\mathcal{J}_1 _s}} \end{array} \right] \end{aligned}$

Denavit-Hartenberg parameters

Parameter Identification (2/4)

Experimental setup

Kinematic calibration results

	Link 1	Link 2	Link 3	Link 4
a_i [m]	0.3825	0.3825	0.3825	0.3351
θ_{0_i} [degrees]	0	5.801	-3.402	-1.391

-	
Parameters	Value
$x_{\mathcal{BJ}_1}[m]$	0.2058
$y_{\mathcal{BJ}_1}[\mathbf{m}]$	0.0155
$\theta_{\mathcal{BJ}_1}$ [degrees]	18.211

Parameter Identification (3/4)

Dynamic calibration:

Using a similar procedure but observing the reaction of the base, the dynamic parameters (i.e. Inertia) can be estimated.

$q_{0_{f}}=d\left(b,m,I,\theta\left(t ight) ight)$	$\Delta \xi_d = \left(\Phi_d^T \Phi_d\right)^{-1} \Phi_d^T \Delta q_{0_f}$				
$\Delta q_{0_f} = \hat{q}_{0_f} - \tilde{q}_{0_f}$	$\Phi_d = \left[$	$\frac{\frac{\partial d}{\partial b}}{\frac{\partial b}{1}}_{1}$ \vdots $\frac{\partial d}{\partial b}_{s}$	$\frac{\frac{\partial d}{\partial m}}{\vdots}_{\frac{\partial d}{\partial m}s}$	$\left.\begin{array}{c}\frac{\partial d}{\partial I_{1}}\\\vdots\\\frac{\partial d}{\partial I_{s}}\end{array}\right]$	

		Link 1	Link 2	Link 3	Link 4
Measured	→ m_i [kg]	2.88	2.88	2.88	2.88
Assumed	→ b_i [m]	0.191	0.191	0.191	0.168
	I_i [kg m ²]	0.034	0.034	0.034	0.034

Kinematic Manipulability analysis

Fixed-base workspace analysis

- Area that can be reached with a fixed-base.
- Kinematic manipulability measure is proportional to the ellipse area.

Floating-base workspace analysis

Straight-Path Workspace

 Move the end-effector in a straight path until a dynamic singularity or a joint limit is encountered. <u>E</u>

Maximum reachable workspace → Radius of 1.3 m

ROBOTICS

- 1) A four link modular robotic arm has been design, assembled and commissioned to be used in the NPS-FSS T/B.
- 2) Modular design allows for quick re-configuration and incremental upgrades.
- 3) Kinematic and dynamic calibration performed.
- 4) New approach to dynamic calibration by observing the basereaction has been proposed and tested.

Thank you for your attention.

Questions?

Design and parameter identification by laboratory experiments of a prototype modular robotic arm for orbiting spacecraft applications

Dr. Josep Virgili Llop, NPS-Mechanical and Aerospace Engineering
 CPT Jerry V. Drew II, NPS-Mechanical and Aerospace Engineering
 Prof. Marcello Romano, NPS-Mechanical and Aerospace Engineering