FROM LOW LEVEL TOOLBOX TO ORBIT DETERMINATION: HANDLING USERS
REQUESTS IN OREKIT

L. Maisonobe, P. Parraud

CS-SI
Parc de la grande plaine - 5 rue Brindejonc des Moulinais
BP 15872
31506 Toulouse CEDEX 5
France

ABSTRACT

Orekit [11 2] is a core space flight dynamics library pub-
lished as free software under the terms of the permissive
Apache Software License V2 [3]]. Since its inception in 2002,
Orekit was designed as a low level layer providing the foun-
dation objects for operational applications. From the very
beginning, the foundation objects included time, frames, or-
bits, but also attitude, maneuvers and a rich framework for
state propagation with continuous output and on the fly de-
tection of discrete events. As new versions were published,
this set of features has been extended, with new propagators
(the semi-analytical DSST being a major example), new pre-
defined events (16 as of end 2015 and counting), new frames
and various improvements.

As an open-source project, Orekit is essentially driven
by its users requests and contributions. Looking back at the
project evolution, one notices that after the initial stabiliza-
tion phase during which the core features were completed,
users requests led to introduce more and more intermediate
features. These features where more mission or operation-
oriented, showing us the library was used in various contexts
for real problems solving. Many features added in the last two
or three versions were really not envisaged at project start.
These features clearly show the benefits we get from an open
community. Some users have a problem to solve that first
appears to be really mission-specific, but often as they notify
the project about it, it appears more general than expected and
can benefit other users after some reformulation. One typical
example is the ellipsoid tessellation. This strange feature was
needed for one project in early 2015, but just one month after
its design, a second project raised a similar need and a few
weeks later an independent user opened a feature request on
the same topic.

Some other features have been on our plans for a few
years without being implemented, both because of lacking re-
sources to do the job and because they were considered at
the boundary of Orekit scope. This was the status of orbit
determination. Here again, as more and more users were de-

manding for it, we finally embarked on it and added it.

This presentation focus on how an open-source project
can interact with its users while still maintaining a general
orientation, using some examples from the last few releases
of the library, up to the latest addition of orbit determination.

Index Terms— Open-source, Orekit, community

1. INTRODUCTION

Orekit [} 2] is a free software library providing core space
flight dynamics objects. It was started in 2002 and was made
freely available under the terms of the Apache Software Li-
cense V2 [3] since 2008.

2. A CONTINUOUS EVOLUTION

The history of Orekit starts in 2002, as CS decided to de-
velop an in-house space flight dynamics product in order to be
able to bid in international tenders. The decision was driven
by too high licenses costs of available systems (regardless of
them being agencies or commercial products) that penalized
our offers. The development was slow as few resources were
available and as everything was funded internally. As of 2006,
an early version was available and technically exceeded the
initial expectations, so it was considered worth to not only
use it for bidding, but also to sell it as a product. This was
a commercial failure. Two years later, all the space actors
we approached declared the product was technically amazing
and very well designed, but none wanted to get bound to yet
another third-party controlled critical component.

CS decided therefore to open-source Orekit in 2008.
The Apache Software License V2, a permissive license, was
strategically selected [3, 14]. This license is often qualified as
business friendly. These choices ruled out the concerns that
restrained adoption of the library by giving control back to
all potential users. This move was very well received by the
space community, despite it surprised many people given the

depth of the modelling and thorough design.

During the early years, despite Orekit was a free software
library, its development was still performed in a cathedral
mode [5]. This means all decisions and all development were
done behind closed doors and users had to wait until a new
version was published. Despite this closed process, we get the
first external contributions. The process was improved and a
public forge was opened in 2011 [6]. Users could participate
more actively to the evolution of the library. The same year,
the first external contributor was given direct commit access
to the source repository.

The last milestone was reached in 2012: the governance
of the project was also opened to other actors, using a model
inspired by the Apache Software Foundation meritocracy [[7].
Today, the Project Management Committee members come
from agencies (ESOC, ESTEC, NRL), academics (ISAE,
University at Buffalo), as well as private companies (TAS,
Applied Defense Solutions, CS-SI).

The Orekit library is used by numerous actors and an
ecosystem is gradually developing around it [8]].

3. COMMUNITY

What are the key factors that changed a commercial failure
into a successful project?

The first factor is the choice of the open-source model,
and the choice of a permissive open-source license. Space
systems are critical ones. Stakeholders are not ready to give
up their control over such strategic components, even for the
best designed library. Open-source gives this control back
to them. Permissive licenses do not introduces fears to lose
strategic advantages for the value-added components anyone
can stack up on top of a low level library.

The second factor is the community. An open-source
project without a community is a failed project. Lets look
back more than 20 years ago, at an interesting example.
While working in a public context, the main author did create
an attitude simulation library. The library was innovative
(and in fact would still be by todays standards). It had been
operationally validated by several years of use in LEOP. This
library was released as free software in order to foster its
adoption by the space community, albeit under the terms of
a strange home-grown license. However, no real effort was
dedicated to create and animate a community. There was no
time allocated for this and we hoped the technical features
alone would draw crowds to it. They didn’t. It was, and
still is, a bitter disappointment, but it taught to some of us
something valuable:

Providing the best technical product, even free of
charge, is not sufficient for success. You have
to work with others, and care about them if you
want them to adopt it.

This is a well known aspect of products development.
It has been thoroughly analyzed a few years later by Eric
S. Raymond in his renowned essay the Cathedral and the
Bazaar [5]. The essay points out 19 lessons learned that
influenced the open-source movement and are now widely
adopted. Lesson number 7: “Release early, release often. And
listen to your customers”, is the most well-known quote from
the essay.

Lesson number 6, despite less renowned, is also a key
point. It appears in section The importance of Having Users.
This lesson reads “Treating your users as co-developers is
your least-hassle route to rapid code improvement and effec-
tive debugging”. We missed this element in the old attitude
simulation library. It is the underlying theme of this paper.

When Orekit was published as a free software, we had
a much better understanding of how open-source works, we
had already learned from experience some (but not all) of the
errors that should be avoided. Our goal was to really open as
much as possible the development of the library and to adopt a
bazaar-type development model. It was not possible from the
very start, as the product was not yet established and setting
up the infrastructure for collaborative required some work.
Only a minimal static web site was set up and the Orekit team
pushed versions as they were published.

4. INTERACTING WITH USERS

4.1. Point-to-point communication

During the initial years, as only a static web site was available,
interactions were limited to a contact page that listed a few
mail addresses for technical or administrative matters. The
addresses were redirected internally to various people at CS-
SI so they could answer questions. This means the communi-
cation was essentially point-top-point without any visibility.
As space flight dynamics is not really a popular domain, this
interaction was indeed low volume.

Despite these adverse conditions, the first interaction from
a total outsider occurred less than one month after the first
publication. We of course already had some discussions about
the move to free software with our regular customers earlier,
but this one was not on our radar. It started with questions (the
first one concerning validation, as could be expected) and we
replied as accurately and as thoroughly as we could, even not
knowing who was our first customer, as my boss called him.
A few weeks later, we got a follow-on of our first contact.
This time, instead of questions he suggested some evolutions
based on their use. The last sentence of this message was the
one that really delighted us: “We know we can extend your
base TLE class to accomplish this, but thought it might be
something that would help others as well”. They understood
what open-source meant and complied to it. Of course, we
did implement the feature they asked for (it was only a few
lines of code) and it was published in the next version.

This type of interactions continued regularly and still
happens today. Some random people jumping out of nowhere
contact us saying they have been happy Orekit users for
weeks, or months, and even years by now, and they have
something to ask or to suggest, or even to contribute.

4.2. Collaborative tools

Point-to-point communication was only a temporary solution.
It could not be used reliably for a full-fledged open-source
project. The main drawback of this mode of communication
is that it does not benefit the whole community. There are no
public archives that can be indexed by search engines. This
implies that the same question can be asked again and again
as nobody can see that it has already been answered a number
of times.

From the very beginning, the Orekit team wanted to have
a full set of collaborative tools set up and publicly available.
This was effective in 2011 with four main services started:

e public mailing lists with archiving,

e source code management repository with anonymous
read access,

e software forge with issues tracker, activity, download
area, wiki, connection to the Source Code Management
System (SCM)

e static web site still available

All these services allowed to get rid of the ineffective
cathedral development model and embrace the more efficient
bazaar development model.

We selected a decentralized Source Code Management
system: git. A decentralised SCM simplifies collaboration as
external users can use it on their own even before they get
write access to the official reference repository. They can
keep their source tree synchronized with the upstream work.
They can easily provide patches that they want to get included
in the upstream code. Centralized source code management
systems like subversion for example require more work for
users. This is especially apparent when merging upstream
work and own local work. Centralized SCM could be used,
as numerous open-source projects prove it, but decentralized
SCM are really a simplification for collaboration.

An important project management decision made at that
time was that the official git repository available to external
users is the repository used by the core Orekit developers
themselves. It is not a clone lagging in time or containing
only a subset of the features. The reasons for this choice are
once again related to community management. A real time
view of the commits made shows a more open policy. This
also greatly speeds up issues corrections. When users open
an issue ticket in the forge, for them it is important. With the
development repository being public, they get the fix as soon

as it is created by the development team. In some cases, we
had fixes published as fast as 20 minutes after the issue has
been notified. Doing this shows the users they are considered
and it gives them more confidence about the project. This is of
course not always possible and some issues remained opened
for months or even years in some cases. These long delays
correspond to issues that are either very difficult to reproduce
(bad bugs reports) or solutions that need some incompatible
changes that cannot be introduced between minor versions or
are inconsistent with the project design decisions. Delays also
happen for tickets that are not issues but are rather features
requests that may be costly to develop and have to wait until
they can be taken into account.

Just as collaborative tools were made available, the Orekit
project welcomed its first external committer. There are now
more external committers in Orekit than CS-SI committers.

5. CUSTOMER USERS

The business model that CS-SI uses for Orekit is mainly a
classical service-based model. CS-SI does paid development
and integration for its customers, either within Orekit itself or
as add-on for applications built on top of Orekit. In addition
to development and integration, CS-SI also provides training
sessions on the library and its dependencies, but these training
sessions alone would never be sufficient to sustain the project.

When an Orekit user is a CS-SI customer and does not
want some elements to be public, these developments are
made in a traditional set up with limited access. However,
as the Orekit project is meant to be as open as possible, a
specific deal is proposed during contract negociation where
the parts that are generic enough and do not involve specific
know-how that must be protected are contributed back to
the mainstream free Orekit library. The customer-specific
parts and know-how are kept in a separate layer delivered to
the customer at contract acceptance. The customers benefits
are that they will not have to pay the maintainance cost for
the generic parts, they are assured these parts will remain
in synch with the upstream library, they will benefit freely
from both bug fixes and further enhancements contributed by
other users. Another argument in favor of generic features
contribution is that it reduces the risk that someone else will
develop and contribute a competing solution for the same
topic. Such competing features generally induce additional
costs for the initial customers, either whereas they still want
to maintain their own out-of-tree feature or whereas they
decide to abandon it and adopt the new contributed feature.
The benefits of contributing generic features for the Orekit
project is that new features are introduced more quickly and
can benefit more users.

This process works quite well, and several projects have
been realized this way [9} 10, [11].

In some cases, users prefer to develop their own versions
out-of-tree and maintain everything themselves. One should

however be aware that this solution, as appealing as it might
appear at first, is not always safe and cost-efficient. It has been
studied at length and there appear to be mostly four different
cases, depending on how much one depends on the upstream
open-source project [12]. At one end of the choices range, the
open-source dependency is an incidental small artifact for a
short term project. In this case the most cost effective solution
is to maintain it out of tree. At the other end of the choices
range, the open-source dependency is a critical central part
for a long-term project. In this case the most cost effective
solution is to hire one of the maintainers or to have one of the
in-house engineers become a maintainer of the open-source
project. There are also some intermediate cases between these
two extremes.

6. USERS REQUESTS TOPICS

The topics addressed by users requests have slightly shifted
from the early years when Orekit was still in a stabilizing
phase to the current phase of an established tool.

6.1. Stabilizing phase

During the early stabilizing phase, most users requests were
questions. At that time, users were discovering the libary
and asking themselves and the developers whereas the library
could be used in their applications and how to use it.

The first-ever question asked was about library validation.
It is still a question that is asked from time to time. Another
set of early questions were related to initial set up, by people
starting to test the library and getting stuck somewhere. As
a result, the online documentation was improved and hardly
get them anymore. This is one side effect of having differ-
ent users: they encounter a problem and this guide the project
team to improve the product, here it was the documentation
that was lacking and we did not identify it alone, because
we were already used to the library since years so everything
seemed natural and well explained to us despite it was not.

Then some bug reports were made, sometimes with fixes.
The first bug report arrived a few months after the first release,
it had the fix attached to it. Here again, this report proved
the interest to have a set of different users than yourselves:
the bug was related to a gravity field loader that we were not
using ourselves (we used a different one), so the bug would
have remained in the library for a long time before being fixed
if we were the only one to use Orekit and have access to the
code. The bug was identified, analyzed and fixed by someone
else, and we got the fix for free.

When it was released publicly, the library was already
quite features-rich and included a sufficient number of com-
ponents to allow developing complete space flight dynamics
applications. So the first feature requests that arrived were
mostly related to the API (improving data loading, providing
access to some internal data ...).

The profiles of the users were also unexpected to us. As
per company history, we dealt mainly with agencies and large
companies like spacecrafts manufacturers. We did expect
most of potential Orekit users would belong to these entities
and that this would be a small world and that we would al-
ready know most of our users. Someone even presaged us
Orekit would be a failure because “there is no such thing
as a space flight dynamics community”. We were wrong.
There are a lot of people using space flight dynamics out
there. They do not necessarily belong to either agencies or
big companies, some are in small consultancy business, in
start-ups or in academics. Some came from big companies
we never succeeded to approach before and that came to us
by themselves once Orekit was released. Many of our users
were CS-SI competitors (we expected it), but they also did
contribute (we did not expect it).

All these users brought something to us. Sometimes it was
a simple hint that documentation was not clear in a specific
place, sometimes it was a fix, sometimes it was a question
about a feature that gave us some guidance about what the
future development priorities should be if we wanted to match
users needs.

6.2. Established tool phase

Now that the Orekit tool is more established and as documen-
tation has improved, we get less basic questions about setting
up the library for simple applications. The topics of the in-
teractions have shifted towards expert uses of flight dynamics
and more mission-oriented domains. Recent examples about
expert use are the ability to propagate in osculating elements
starting from mean elements, or how to handle negative alti-
tudes in ground stations corrections models. Recent examples
about mission-oriented features are visibilities of complex ge-
ographic zones from an on-board sensor, or orbit determina-
tion capabilities.

These new questions showed us that Orekit is used in var-
ious contexts for real problems solving. These users are al-
ready quite fluent with Orekit and the level of the questions
show they know very well the internals of the library, proving
they have been regular users for months or years.

6.3. Recent examples

A typical recent example of mission-oriented feature that was
asked for by several users is the ellipsoid tessellation. In fact,
no users jumped to ask explicitly for ellipsoid tessellation, but
the handling of several different users requests resulted in this
feature to be added.

Everything started a few years ago, as for some Earth-
observing mission needs, it appears necessary to detect when
a spacecraft did fly over some geographical zone. The discrete
events detection feature which has been included in Orekit
since the beginning (long before it was free software) was the

obvious mechanism to implement this, but it required a scalar
detection function that would be continuous and change sign
when flying over the zone boundaries. This looks simple at
first, but becomes quickly tricky as we consider the corner
cases related to the spherical topology. What happens if the
zone crosses the antimeridan at 180° longitude? What hap-
pens if the zone contains a pole? What happens if the zone
is not path-connected, for example if it consists of several is-
lands in an archipelago? What happens if the zone contains
holes, for example if you are interested in the littoral zone
around an island but not in the land mass? What happens
if you combine everything, looking at several big islands,
containing lakes, containing small islands, containing pools,
at the antimeridian? These questions arose as starting from
a specific mission-related request, with in fact only simple
zones, we anticipated that once available it will grab the at-
tention of other users that will surely need to go behind those
simple zones. So from the very beginning, it was decided
that the answer to this user request should not be handled by
the naive implementation using a simple loop of longitude-
latitude points; it would clearly not scale up to more complex
use cases.

This is an important part of analyzing users requests, and
is even more important for low level libraries like Orekit. De-
signers and developers must prepare their code to be used in
very different cases. They have to think out of the box. Look-
ing only at one specific use case, one specific user needs is a
sure way to fail. This characteristic of low level libraries ex-
plain why open-source is well adapted for low layers: with a
wide range of users, more extensible solutions get designed.
This is quite similar to how design patterns work [[13]].

This first need took some times to be properly handled, as
the main problem was more geometry related than space flight
dynamics related. It was therefore handled at the Apache
Commons Math level, in the geometry package thanks to the
generic Binary Space Partitioning trees implementation [[14].
As the underlying mathematical models were available, they
were used in Orekit to implement the detection function as a
signed distance to boundary which was made available as part
of Orekit 7.0.

As the new detector was available, it quickly appeared that
despite complex zones handling was already anticipated and
solved, unexpected user needs flourished around it that were
not addressed. We were able to handle a single moving point
(the spacecraft) with respect to a complex ground zone. We
had already been able for years to handle a single target point
(for example a ground point) with respect to an on-board sen-
sor field of view, for either circular or dihedral sensors shapes.
Users wanted to have both, i.e. when does a complex ground
zone enters or leave a complex sensor field of view. Our so-
lution was not sufficient for this new use case.

Then, in early 2015, just after the release of Orekit 7.0,
a completely independent user request was made: someone
needed to generate regular tiles on a geographic zone, and

then to compute visibilities on the center of each tile. This
was the missing piece that gave us a hint on how to solve the
problem. The request had nothing to do with sensors fields of
view, but as we had just finished the geographic zones work,
it combined nicely and gave us the idea of using sampling to
solve the other problem. Once again, combining unrelated
needs from different users solved gracefully a complex prob-
lem. Figure|l|shows an example result of this tiling process.

Ellipsoid Tessellation of non path-connected zone
tiles 150km x 50km, gap Skm, along descending track, no truncation

52—

50—

IS
£
I

latitude

IS
>
I

44

Q2

oL e e

longitude

Fig. 1. Ellipsoid tessellation

Using the complex zones definition made available since
Orekit 7.0, we already handled the geometrical models effi-
ciently. So despite our user asked for simple zones, we de-
livered him something that could handle non-path connected
zones (as in the figure with continental France and Corsica),
and even more complex cases. This was already much bet-
ter than existing libraries. We also took care of fine mod-
elization of tiles directions, handling either constant azimuth
with respect to the North or along track path given a reference
orbit (with the maximum latitude U-turn taken properly into
account), and even taking into account at each point the dif-
ferent radii of curvature due to the ellipsoidal shape. In just
a few weeks, we were able to deliver a complex feature that
exceeded expectations, just building on top of what we had
made before. The tessellation feature was contributed to the
open-source library, and the complete mission-specific appli-
cation was delivered separately.

We were already happy with this feature and ready to
use it for solving our complex geographical zone in complex
field of view problem when yet another user request came in,
this time concerning dilution of precision computation over
a zone. Building again on what we had done, handling this
request was straightforward, we just adapted the API of the
new tessellation feature for also allow creating grids of points
(which is simply the dual operation to creating tiles) and we
were done.

Then we added the final region to field of view feature we

wanted to have for years. Strangely enough, someone asked
us for this just as we were developping it.

As could be expected, the story does not end here. As we
were ready to finalize version 7.1, one of our external com-
mitters, noting the new region to field of view feature, no-
ticed this could be enhanced further to be applied to ground
stations, which we did not foresee. We changed slightly an
API and a few days later he provided new detectors.

All these features are available in version 7.1 of Orekit,
which was published in February 2016. They are the result of
combining at least five different users requests in a consistent
framework.

Another example shows a completely different approach.
This is the orbit determination feature. This feature has been
the evergreen lacking feature in Orekit. As an attempt at self-
derision, when we set up the forge in 2011, we even registered
this feature request as the first one in the issue tracker [15]. A
small subset of users told us at the very beginning that orbit
determination was a too high-level feature and that it didn’t fit
in Orekit scope. An overwhelming number of other users on
the contrary really missed it, some of them even saying it was
the only missing feature and that they were eagerly waiting
for it.

As we were still thinking about it, we were happily
surprised to receive a contributed orbit determination from
Telespazio, despite we are more often competitors than asso-
ciate [[16]]! This was a great success of the open-source model
and we thank them a lot for this. However, it appeared merg-
ing this contribution into the library would be very difficult.
It was a dedicated application instead of a library framework,
its design was not in line with Orekit standards, measure-
ments types were not object oriented, it was not extensible
for users-defined measurements or qualibration factors ... So
unfortunately, this contribution remained unused for several
years, and we were really sorry about that.

We thought some low level building blocks should be
made available in Orekit so users can easily create full-
fledged orbit determination systems. We already had some
of these blocks. One such block is the full integration of
state transition matrices as well as partial derivatives of state
with respect to model parameters in the numerical propagator
(implemented using variational equations). Another block is
the least squares adjustment of initial orbit used in propagator
conversion. It would be nice to also provide a proper measure-
ments interface with several Orekit-provided implementation
for traditional measurement types (range, range-rate, angu-
lar, 3D point) and perhaps more exotic ones (double-range
turn-around measurements, angular measurements of ground
references extracted from on-board remote sensing, ...). It
should be possible to include biases at different levels (for
example at ground-station level where it would be different
for all ground stations or at spacecraft level where it would be
shared among all measurements of the same type). It would
also be nice to be able to go through maneuvers and even to

calibrate maneuvers. Perhaps loading CCSDS tracking data
messages (CCSDS 503.0-B-1) should be included too, just as
we already supported other CCSDS standards.

Of course, the goal was not to implement everything up
to mission-specific loading of meta-data like special mea-
surements formats, calibration or pre-processing features, but
only to provide at Orekit level the general purpose parts and
standard-compliant parts with some high-level API. It would
remain user responsibility to build operational orbit determi-
nation applications from the Orekit-provided building blocks,
thus remaining true to Orekit scope.

We proposed to our fellow developers to follow this ap-
proach just after the release of version 7.0, and it was well
received.

However, nobody came up to tackle the problem and af-
ter a few more months this was still only a to be done fea-
ture. We were aware of at least four different orbit deter-
mination applications realized on top of Orekit, without be-
ing included in the library itself. Some were non-operational
research tools [17], some were closed-source development
made by industry or agencies. Orbit determination is indeed
an important feature and designing it for reuse and extensibil-
ity is not an easy task.

So according to Orekit business model and still wanting
to add it to Orekit, the feature was proposed to customers,
with the deal that they will each pay for only a small part of
the complete development and that the core building blocks
would be contributed by CS-SI to Orekit, whereas specific top
level applications built on top of these core building blocks
would remain customers own. Using this model, we were
able to design and develop orbit determination in the scope of
Orekit, with user-extensibility in mind.

As of early 2016, the feature is complete, but still not in
the main public repository. It is in one of the few non-public
repositories that are used for contractual work in Orekit. It
will be merged in a future version, expected to be published
in the summer of 2016.

7. CONCLUSION

In this paper, we have traced the history of users interactions
in Orekit, from the simple point-to-point discussions of the
early years to the use of collaborative tools.

Orekit successfully gathered a community around the
project, despite focusing on a niche domain. This community
is more diverse than we expected at first, and it is helpful.

Having external users appears to be a key point for the
evolution of a project, and open-source is a key to attract
users. Different points of view, different priorities, different
needs are strong safeguards that avoid rushing into a dead-
end. These users must be cherished, they are the best asset of
an open-source project.

8. REFERENCES

[1] L. Maisonobe, V. Pommier-Maurussane, Orekit: an
Open-source Library for Operational Flight Dynamics
Applications, in 4" ICATT, May 2010.

[2] Orekit site: https://www.orekit.org/.

[3] Orekit Apache Software License V2, https://www.
orekit.org/license.html.

[4] L. Maisonobe, P. Parraud, S. Dinot open-source publi-
cation: a strategic choice for private companies, in 6
ICATT, Mar 2016.

[5] E. S. Raymond The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revolution-
ary, ISBN 1-565-92724-9, 1999.

[6] Orekit forge: https://www.orekit.org/forge

[7] Orekit Governance: https://www.orekit.org/
forge/attachments/download/338/0OREKIT_]
Governance.pdf

[8] L. Maisonobe, A. Espesset, G. Prat, Rugged: an open-
source sensor-to-terrain mapping tool, in 6" ICATT, Mar
2016.

[9] J.M. De Juana, S. Pessina, D. Aguilar, High Fidelity
End-to-End Orbit Control Simulations at Eumetsat, in
23'4 ISSFD, Nov 2012.

[10] N. Bernard, L. Maisonobe, L. Barbulescu, P. Bazavan,
S. Scortan, P. J. Cefola, M. Casasco, K. Merz, Vali-
dating Short Periodics Contributions in a Draper Semi-
Analytical Satellite Theory Implementation: the Orekit
Example, in 25" ISSFD, Oct 2015.

[11] L. Maisonobe, J. Seyral, G. Prat, A. Espesset, Rugged:
an operational, open-source solution for Sentinel-2 map-
ping, in SPIE Remote Sensing 2015, Sep 2015.

[12] Dave Neary, The Cost of Going it Alone,
https://desktopsummit.org/sites/www.
desktopsummit.org/files/cost_going_
alone.pdf, Aug 2011, Accessed: 2016-02-24.

[13] Design patterns: https://en.wikipedia.org/
wiki/Software_design_pattern

[14] Apache Commons Math:
apache.org/math/

https://commons.

[15] Orekit issue 1:
forge/issues/1

https://www.orekit.org/

[16] Telespazio contribution:
www.orekit.org/forge/projects/

https://

[17] E. M. Ward, J. G. Warner, L. Maisonobe, Do Open
Source Tools Rival Heritage Systems? A comparison of
tide models in OCEAN and Orekit, in AIAA/AAS As-
trodynamics Specialist Conference, SPACE Conferences
and Exposition, (AIAA 2014-4429)

orbit-determination-telespazio—-s—-contribution

https://www.orekit.org/
https://www.orekit.org/license.html
https://www.orekit.org/license.html
https://www.orekit.org/forge
https://www.orekit.org/forge/attachments/download/338/OREKIT_Governance.pdf
https://www.orekit.org/forge/attachments/download/338/OREKIT_Governance.pdf
https://www.orekit.org/forge/attachments/download/338/OREKIT_Governance.pdf
https://desktopsummit.org/sites/www.desktopsummit.org/files/cost_going_alone.pdf
https://desktopsummit.org/sites/www.desktopsummit.org/files/cost_going_alone.pdf
https://desktopsummit.org/sites/www.desktopsummit.org/files/cost_going_alone.pdf
https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern
https://commons.apache.org/math/
https://commons.apache.org/math/
https://www.orekit.org/forge/issues/1
https://www.orekit.org/forge/issues/1
https://www.orekit.org/forge/projects/orbit-determination-telespazio-s-contribution
https://www.orekit.org/forge/projects/orbit-determination-telespazio-s-contribution
https://www.orekit.org/forge/projects/orbit-determination-telespazio-s-contribution

	 INTRODUCTION
	 A CONTINUOUS EVOLUTION
	 COMMUNITY
	 INTERACTING WITH USERS
	 Point-to-point communication
	 Collaborative tools

	 CUSTOMER USERS
	 USERS REQUESTS TOPICS
	 Stabilizing phase
	 Established tool phase
	 Recent examples

	 CONCLUSION
	 References

