

PROARTIS for Space

Schedulability Analysis Techniques and Tools for Cached and Multicore Processors

TEC-ED & TEC-SW Final Presentation Days - 7th December 2015

Partners

Università degli Studi di Padova

Barcelona Supercomputing Center Centro Nacional de Supercomputación

COBHAM

Cobham Gaisler AB

□ Project funded by the European Commission under FP7 (2011–2013).

Probabilistically Analysable Real-Time Systems

Demonstrated how using probabilistic techniques can aid in the timing analysis of complex software systems

PROARTIS

PROARTIS

□ HW is not predictable any more. SW is more and more complex

Intuition is that the randomness of the timing behaviour of a system can be exploited to enable new forms of timing analysis

If the system behaviour can be characterised bottom-up as random behaviour, then probability theory can be used to predict the overall behaviour of the software and its likelihood of exceeding assigned bounds.

PROARTIS for Space

□ How to use multi-core processors (NGMP) in an effective way

□ While achieving adequate levels of guarantee of the timing correctness

- Investigate the choice of scheduling and schedulability analysis for NGMP
- Use of software randomisation to enable probabilistic timing analysis
- Hardware support for observing timing behaviour
- Improve tool support for timing analysis on NGMP

Multiprocessor Scheduling

Università degli Studi di Padova

Transition to multiprocessors

Uniprocessor's body of knowledge does not directly translate to Multiprocessors

- P4S surveyed scientific literature for specific solutions for the use of multiprocessor systems in embedded critical systems
 - > Find an efficient and analysable scheduling algorithm where
 - *Efficient*: low overhead, exploits most of the processing power
 - Analysable : is the system schedulable?, account for overhead
 - > Find an efficient and analysable way to share resources (e.g., memory) where
 - *Efficient* : low overhead, minimizing blocking on rivals
 - Analysable : accounting for blocking time and overhead

Multiprocessor scheduling paradigms

Global schedulers

- > PROS: idle only when there is no task to schedule (work conserving)
- > CONS: high overhead, central control bottleneck

Partitioned schedulers

- > PROS: reuse lots of uniprocessor knowledge, limited overhead
- > CONS: NOT work conserving, task-to-processor assignment problem
- □ Hybrid schedulers
 - > PROS: generally achieve high schedulability
 - > CONS: mostly theoretical, very limited ecosystem

Multiprocessor resource sharing

- Sharing SW resources is a necessity when collaborative tasks reside/execute on different cores
- Potential parallelism complicates the problem wrt single core settings
- Different solutions can be deployed
 - > Based on non-preemptive sections (Easy implementable, short blocking, defy priority/criticality)
 - > Based on priority boosting (Limited blocking, defy priority/criticality)
 - > Multiprocessor Resource Sharing Protocol MrsP makes a class on its own
 - Helping mechanism (migration) to release resources as soon as possible
 - Per-core immediate ceiling to preserve priority/criticality

RTEMS-SMP MrsP

□ First real implementation on a industry-ready OS

Original implementation quite complex

> Complex data structures, Unused hooks for future implementation of other protocols, ...

□ New implementation

- Not easily extendable for other protocols
- Smaller and time-composable data structures
- > Simpler interaction with the scheduler

RTEMS-SMP MrsP

□ Semaphore release (unlock) procedure:

- > old implementation: dependent on the pending tasks
- > new implementation: constant time

Modified version

RTEMS-SMP MrsP

□ Semaphore obtain (lock) procedure when nesting resources:

- > old implementation: dependent on nesting depth and pending tasks
- > new implementation: linear time, dependent only on nesting depth

Software Randomization

Why Software Randomization?

The location of objects in memory (memory layout) determines its location in caches (cache layout)

- > The random location of objects in memory makes conventional caches behave as a random ones
- ➢ Random memory layouts → Random cache layouts

□ At every **program execution** a new memory layout is **randomly** generated

> Different memory layouts results in different execution times

Randomized memory objects

- Functions (Code Randomisation)
- Stack frames (Stack Randomisation)

A compiler LLVM¹ pass, a run-time library and a memory allocator based on TLSF² has been developed

• Software framework (Stabilizer^{3,4}) available at <u>https://github.com/ccurtsinger/stabilizer</u>

□ SW-Rand is compatible with NGMP and RTEMS

• some restrictions apply

¹ The LLVM compiler infrastructure. <u>http://llvm.org/</u>

² TLSF: Dynamic storage allocation for real-time embedded systems. M. Masmano, I. Ripoll, and A. Crespo

- ³ Probabilistic Timing Analysis on Conventional Cache Designs, DATE 2013
- ⁴ Stabilizer: Statistically Sound Performance Evaluation, ASPLOS 2013

Code Randomization

□ SW-Rand randomizes code at the function granularity

SW-Rand request enough memory to be able to allocate the function code and to hit in any cache line

Stack Randomization

SW-Rand randomizes the stack by making it non-contiguous

• Each function call moves the stack to a random location

 $\hfill\square$ On every call, the function loads its stack frame address from a frame table

Tool support for NGMP

COBHAM

Cobham Gaisler AB

NGMP Tool Support

□ Tool support for timing analysis of NGMP

- Quad-Core 32-bit LEON4 SPARC V8 processor
- NGMP Tracing Capabilities + Data Logger
- Timing analysis tools
 - RapiTime (PROARTIS/PROXIMA extension)
 - RapiTask (multi-core extension)

Data Logger for NGMP

Based on Rapita Systems RTBx-1221

□ Capture execution trace via GPIO

- □ Each core write to 8 pins of GPIO via special opcode
- □ Recorded all at once as 32 bit data by RTBx
 - Some post processing is required

Execution Trace

Load/Store to alternate address space identifier (ASI) 0x80 and above lead to propagation of part of instructions to the trace output (8 bits per core). Format (3):

	11	rd	op3	rs1	i=0	asi		rs	s2
	31	29	24	18	13	12		4	0
	11	rd	op3	rs1	i=1	si	imm1	.3	
	31	29	24	18	13	12			0
<pre>Frace output = inst</pre>	(7:0)	when:							
rd		= don	't care	# 362	61.11 ns :	cpu0: 0xc0000038	nop	R0 101	0-11
op3		= LD*/	A/ST*A	# 3628 # 3630 # 3632	3.332 ns : 5.554 ns : 7.776 ns :	cpu0: 0xc000003c cpu0: 0xc0000040 cpu0: 0xc0000044	nop nop	sgu, [u]	0x41
rs1		= don	't care	# 3633 # 3641	4.444 ns : 6.666 ns :	cpu0: 0xc0000048 cpu0: 0xc000004c cpu0: 0xc0000050	or , nop nop	*g2, *g2,	76gU
i		= 0		# 480 # 4810 # 4812	5.554 ns : 7.776 ns :	cpu0: 0xc0000054 cpu0: 0xc0000058 cpu0: 0xc000005c	stba stba nop	%g0, [0] %g0, [%g1	0x42 1] 0x43
asi(7))	= inst	(12) = 1	# 4817 # 4819 # 4829	46150 ns : 2.222 ns : 4.444 ns :	cpu0: 0xc0000060 cpu0: 0xc0000064 cpu0: 0xc0000068	nop mov 9 and 9	%asr17, %g %g3, 0x001 %cd 10x00	gs 19400 lf, %gs
				1				.g. [

		61	00	40	X00	61)00			
A 📰 👁	Now	69638.888 ns	1.1.1		48100	l I I Ins		1111	4820	00 ns
💼 🎤 👄	Cursor 1	48061.11 ns	48061	.11 ns -	44.444 ns	-				
💼 🎤 😑	Cursor 2	48105.554 ns			4810	5.554 ns	3			

Execution Trace

- Support was also added to filter the on-chip instruction trace buffer on load/store alternate instructions.
- This allows instrumentation points to be recorded in the trace buffer and the data can then be continuously dumped through a high-speed debug link and fed into Rapita's toolchain.
- □ More performance counters to measure: bus congestion, L2 cache events, etc.
- □ All improvements generated by this project for the NGMP are now included in the NGMP (GR740) ASIC.

Trace visualisation

□ Visualisation of multicore traces and RTOS schedule

RapiTask

- Traces from NGMP are filtered and processed by RapiTask to produce a graphical view of the schedule as it happened.
- It is also possible to show the execution of individual functions within each task
- This view can be synchronized with the timing analysis view from RapiTime
- > Allows to view of the multicore scheduling

Multicore Trace Visualisation

Timing Analysis (RapiTime)

RVS - C:\RVS3.4\examples\RapiTime_examples\missile-timing.rvd - RVS Report Viewer	
<u>File Edit Navigate Search Window H</u> elp	
I f_compass.poll ⊠	💫 test_hamess.cycle-U 🛛 🗖 🗖
Execution Time Comparison for Function: if_compass.poll	🚳 Max Timings for Context: test_harness.cycle-U
🚡 Up to Report level 🗋 Up to File level 😰 Source code 🗄 Show Context 🛛 milliseconds (ms) 🔷 🎤 🌟 Find element 🕞 🖉 🖓 🕀	🔚 Up to Report level 🛞 Up to Function level 🛃 Source code 🛛 🧰 milliseconds (ms) 🔹 🎤 🚖 Find element 🔹 🔎 🔆 🗄 🕐
Summary	End to End Timing Charts:
Self Execution Time	End-to-end timing (Run number)
W-SefET Max-SefET H-SefET 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Execution Time (ms) Function >> Min-ET >> Axg-ET >> H-ET >> Max-ET >> W-ET >>	15.000 90 12.500 0 0
Name Min-Freq Min-SelfET A-Freq A-SelfET H-Freq H-SelfET Max-Freq Max-SelfET W-Freq W-SelfET #Tests ID (P, poll 1 10 10 10 11 10 11 10 11 10 11 10	
Static Tests Min Average High WM Max WCET CT Comparison ET Comparison	▼ Calls (25) ▼ Static Tests Min Average High WM Max WCET CT Comparison
Properties 🕅	
test harness cycle-ll	
132 procedure Cycle is	A
Source 133 begin 134 Transmit info both ways 135 Bus.Cvcle;	

PROARTIS: MBPTA

□ Derived from a branch of Extreme Value Theory (EVT)

RapiTime + MBPTA

□ EVT 'tail extension'

Туре	P < 10^-3	P < 10^−6	P < 10^-9	P < 10^-12	Max
MET	266,716	266,716	266,716	266,716	266,716
RapiTime	266,716	266,716	266,716	266,716	266,716
WCET_EVT	270,487	276,747	283,006	289,266	586,776
WCET_TREE	266,716	266,716	266,716	266,716	266,716
WCET_TREE_EVT	270,487	279,712	288,937	586,776	586,776
Static Tasts Min Average		WCET	Comparison	FT Comparison	DT Analysis

Industrial Case Study

Gaia Mission

Gaia VPU

- Each row of CCD Plane is controlled by Video Processing Unit (VPU)
- Each VPU embed an instance of the gaia vpu software with specific parameters
- Stars cross over each CDD thanks to spacecraft slowly rotating
- Each group of CDD gets specific information on stars shifting and properties

Software cycle

- Samples from CDD each TDI (1 ms)
- Command for TDI n must be transmit for TDI n-2
- Samples arrive to VPU in TDI n+2
- To manage time constraints, data are buffered
- Data buffered are indexed by TDI

- Simulator running on Linux to generate input data
- DMA "emulated" via SpW RMAP

Execution platform

Runs on NGMP target
SpW on mezzanine
RTEMS SMP with MTAPI library

Instrumentation

Hardware

- > 8 bits per core
- Output through GPIOs
- Almost no overhead
- Instrumentation points added automatically by RapiTime before compilation
- Several instrumentation profiles

Software Randomization Library

□ Status :

- Compilation chain working
- Errors at runtime
- Bugs under investigation

Limitations :

- RTEMS syntax not supported
- No Dynamic memory allocation
- Only O0 supported
- C++ support needed

Conclusion

□ Very challenging use case

- Complex software (Full application + RTEMS)
- SMP application
- Good progress but some work remaining

□ Randomization library still under work

□ Instrumentation for Timing Analysis is working

Ready for gathering results

□ To learn more about this topic:

PROXIMA Industrial Workshop 28th June 2016

(http://www.proxima-project.eu)