
PROARTIS for Space
Schedulability Analysis Techniques and

Tools for Cached and Multicore Processors

TEC-ED & TEC-SW Final Presentation Days - 7th December 2015

Partners

PROARTIS

 Project funded by the European Commission under FP7 (2011–2013).

 Probabilistically Analysable Real-Time Systems

 Demonstrated how using probabilistic techniques can aid in the timing analysis
of complex software systems

PROARTIS
ERC32

Pipelining Caches

OoO execution

Branch
prediction

Multi-core

NGMP

Performance

Pr
ed

ic
ta

bi
lit

y

PROARTIS

 HW is not predictable any more. SW is more and more complex

 Intuition is that the randomness of the timing behaviour of a system can be
exploited to enable new forms of timing analysis

 If the system behaviour can be characterised bottom-up as random behaviour,
then probability theory can be used to predict the overall behaviour of the
software and its likelihood of exceeding assigned bounds.

PROARTIS for Space

 How to use multi-core processors (NGMP) in an effective way

 While achieving adequate levels of guarantee of the timing correctness

 Investigate the choice of scheduling and schedulability analysis for NGMP

 Use of software randomisation to enable probabilistic timing analysis

 Hardware support for observing timing behaviour

 Improve tool support for timing analysis on NGMP

Multiprocessor Scheduling

Transition to multiprocessors

 Uniprocessor’s body of knowledge does not directly translate to
Multiprocessors

 P4S surveyed scientific literature for specific solutions for the use of
multiprocessor systems in embedded critical systems

 Find an efficient and analysable scheduling algorithm where

 Efficient : low overhead, exploits most of the processing power
 Analysable : is the system schedulable?, account for overhead

 Find an efficient and analysable way to share resources (e.g., memory) where

 Efficient : low overhead, minimizing blocking on rivals
 Analysable : accounting for blocking time and overhead

Multiprocessor scheduling paradigms

 Global schedulers
 PROS: idle only when there is no task to schedule (work conserving)

 CONS: high overhead, central control bottleneck

 Partitioned schedulers
 PROS: reuse lots of uniprocessor knowledge, limited overhead

 CONS: NOT work conserving, task-to-processor assignment problem

 Hybrid schedulers
 PROS: generally achieve high schedulability

 CONS: mostly theoretical, very limited ecosystem

Multiprocessor resource sharing

 Sharing SW resources is a necessity when collaborative tasks reside/execute on
different cores

 Potential parallelism complicates the problem wrt single core settings

 Different solutions can be deployed

 Based on non-preemptive sections (Easy implementable, short blocking, defy priority/criticality)

 Based on priority boosting (Limited blocking, defy priority/criticality)

 Multiprocessor Resource Sharing Protocol - MrsP makes a class on its own

 Helping mechanism (migration) to release resources as soon as possible
 Per-core immediate ceiling to preserve priority/criticality

RTEMS-SMP MrsP

 First real implementation on a industry-ready OS

 Original implementation quite complex

 Complex data structures, Unused hooks for future implementation of other protocols, …

 New implementation

 Not easily extendable for other protocols

 Smaller and time-composable data structures

 Simpler interaction with the scheduler

RTEMS-SMP MrsP

Modified version Original version

 Semaphore release (unlock) procedure:
 old implementation: dependent on the pending tasks
 new implementation: constant time

RTEMS-SMP MrsP

Modified version Original version

 Semaphore obtain (lock) procedure when nesting resources:
 old implementation: dependent on nesting depth and pending tasks
 new implementation: linear time, dependent only on nesting depth

Software Randomization

Why Software Randomization?

Predictable Random

VisiumCore PROARTIS/PROXIMA
(FPGA)

‘Classic’ Timing Analysis Probabilistic Timing Analysis

SW-Rand

Software-only Randomization Approach

 The location of objects in memory (memory layout) determines its location in
caches (cache layout)
 The random location of objects in memory makes conventional caches behave as a random ones
 Random memory layouts Random cache layouts

P

la
ce

m
en

t
Replacement

C
ache S

ets

Cache Ways

Memory

A

B

P
la

ce
m

en
t

Replacement

C
ache S

ets

Cache Ways

Memory

A

B

When is randomization applied?

 At every program execution a new memory layout is randomly generated
 Different memory layouts results in different execution times

 Memory

Memory

Memory

A

A

B

B

A

B

A

B

A

A

B

B

Execution
Time (ET) ET1 ET2 ET3

Software-only Randomization Implementation

 Randomized memory objects
• Functions (Code Randomisation)
• Stack frames (Stack Randomisation)

 A compiler LLVM1 pass, a run-time library and a memory allocator based
on TLSF2 has been developed
• Software framework (Stabilizer3,4) available at https://github.com/ccurtsinger/stabilizer

 SW-Rand is compatible with NGMP and RTEMS
• some restrictions apply

1 The LLVM compiler infrastructure. http://llvm.org/
2 TLSF: Dynamic storage allocation for real-time embedded systems. M. Masmano, I. Ripoll, and A. Crespo
3 Probabilistic Timing Analysis on Conventional Cache Designs, DATE 2013

4 Stabilizer: Statistically Sound Performance Evaluation, ASPLOS 2013

https://github.com/ccurtsinger/stabilizer
http://llvm.org/

Code Randomization

 SW-Rand randomizes code at the function granularity

 SW-Rand request enough memory to be able to allocate the function code and
to hit in any cache line

F

F’

Memory
Memory

Randomize

Stack Randomization

 SW-Rand randomizes the stack by making it non-contiguous
• Each function call moves the stack to a random location

 On every call, the function loads its stack frame address from a frame table

Tool support for NGMP

NGMP Tool Support

 Tool support for timing analysis of NGMP

 Quad-Core 32-bit LEON4 SPARC V8 processor

 NGMP Tracing Capabilities + Data Logger

 Timing analysis tools

 RapiTime (PROARTIS/PROXIMA extension)
 RapiTask (multi-core extension)

Data Logger for NGMP

 Based on Rapita Systems RTBx-1221

 Capture execution trace via GPIO

 Each core write to 8 pins of GPIO via special opcode

 Recorded all at once as 32 bit data by RTBx
 Some post processing is required

Execution Trace

 Load/Store to alternate address space identifier (ASI) 0x80 and above lead to
propagation of part of instructions to the trace output (8 bits per core).

Trace output = inst(7:0) when:
 rd = don’t care
 op3 = LD*A/ST*A
 rs1 = don’t care
 i = 0
 asi(7) = inst(12) = 1

Execution Trace
 Support was also added to filter the on-chip instruction trace buffer on

load/store alternate instructions.

 This allows instrumentation points to be recorded in the trace buffer and the
data can then be continuously dumped through a high-speed debug link and
fed into Rapita’s toolchain.

 More performance counters to measure: bus congestion, L2 cache events, etc.

 All improvements generated by this project for the NGMP are now
included in the NGMP (GR740) ASIC.

Trace visualisation

 Visualisation of multicore traces and RTOS schedule

 RapiTask

 Traces from NGMP are filtered and processed
by RapiTask to produce a graphical view of the
schedule as it happened.

 It is also possible to show the execution of
individual functions within each task

 This view can be synchronized with the timing
analysis view from RapiTime

 Allows to view of the multicore scheduling

Multicore Trace Visualisation

Timing Analysis (RapiTime)

PROARTIS: MBPTA

 Derived from a branch of Extreme Value Theory (EVT)

 EVT allows predicting the shape
of the tail of a distribution of
execution times

RapiTime + MBPTA

 EVT ‘tail extension’

Industrial Case Study

Gaia Mission

Phased Array Antenna
(PAA) panel Propulsion Ring

Propellant &

Central Data
Management
Unit (CDMU),
Payload Data
Handling Unit
(PDHU), Video
Processing
Units (VPU)

Deployable Solar
Panels

Deployable
Sunshield Assembly

Thermal Tent

Fixed Solar Panels

Focal
Plane
Assembly
(FPA)

CCD Array
commanded by Gaia
VPU Software

Gaia VPU

• Each row of CCD Plane is controlled by Video Processing Unit (VPU)

• Each VPU embed an instance of the gaia vpu software with specific parameters

• Stars cross over each CDD thanks to spacecraft slowly rotating

• Each group of CDD gets specific information on stars shifting and properties

FPA

VPU7

VPU6

VPU5

VPU4

VPU3

VPU2

VPU1

Payload
Data

Handling
Unit

(PDHU)

4500 TDI lines AL
(along)

Acquisition
window

19
66

 p
ix

el
s

AC
 (

ac
ro

ss
)

Sky Mappers
CCDs

(1 per telescope)

Astrometric Fields
CCDs (AF1 to AF9)

Photometric
Fields CCDs
(XP = BP &

RP)

Radial
Velocity

Spectrometr
ic CCDs

(RV1 to RV3)

A
cq

ui
re

d
vi

de
o

sa
m

pl
es

A
cq

ui
si

tio
n

co
m

m
an

ds

S
ta

r p
ac

ke
ts

Video processing
algorithms

(Zoom on
one CCD)

Software cycle

• Samples from CDD each TDI (1 ms)
• Command for TDI n must be transmit for TDI n-2
• Samples arrive to VPU in TDI n+2
• To manage time constraints, data are buffered
• Data buffered are indexed by TDI

TDI pulses

TDI n-4 TDI n-2TDI n-3 TDI n-1 TDI n TDI n+1 TDI n+2 TDI n+3 TDI n+4

Sampling
of the CCD

Computation of the
commands for the

sampling of the CCD
at TDI n

The requested
CCD samples
are available

Commands
transit on the
SpaceWire

Samples
transit on the
SpaceWire

I/O transaction betw een the FPA
and the VPU subject to “hard real-time” constraints

Use case

• Simulator running on Linux to generate input data
• DMA “emulated” via SpW RMAP

Execution platform

 Runs on NGMP target
 SpW on mezzanine
 RTEMS SMP with MTAPI library

Core 0

RTEMS SMP

MTAPI

Core 1 Core 2 Core 3

Task A Task A Task A Task A Task A Task B Task A Task A Task C Task A Task A Task D

Instrumentation

 Hardware
 8 bits per core
 Output through GPIOs
 Almost no overhead

 Instrumentation points added automatically by
RapiTime before compilation

 Several instrumentation profiles

NGMP RTBX

GPIOs
Ethernet

Software Randomization Library

 Status :
 Compilation chain working
 Errors at runtime
 Bugs under investigation

 Limitations :
 RTEMS syntax not supported
 No Dynamic memory allocation
 Only O0 supported
 C++ support needed

Conclusion

 Very challenging use case
 Complex software (Full application + RTEMS)

 SMP application

 Good progress but some work remaining

 Randomization library still under work

 Instrumentation for Timing Analysis is working
 Ready for gathering results

Conclusion

 To learn more about this topic:

PROXIMA Industrial Workshop
28th June 2016

(http://www.proxima-project.eu)

	PROARTIS for Space
	Partners
	PROARTIS
	PROARTIS
	PROARTIS
	PROARTIS for Space
	Multiprocessor Scheduling
	Transition to multiprocessors
	Multiprocessor scheduling paradigms
	Multiprocessor resource sharing
	RTEMS-SMP MrsP
	RTEMS-SMP MrsP
	RTEMS-SMP MrsP
	Software Randomization
	Why Software Randomization?
	Software-only Randomization Approach
	When is randomization applied?
	Software-only Randomization Implementation
	Code Randomization
	Stack Randomization
	Tool support for NGMP
	NGMP Tool Support
	Data Logger for NGMP
	Execution Trace
	Execution Trace
	Trace visualisation
	Multicore Trace Visualisation
	Timing Analysis (RapiTime)
	PROARTIS: MBPTA
	RapiTime + MBPTA
	Industrial Case Study
	Gaia Mission
	Gaia VPU
	Software cycle
	Use case
	Execution platform
	Instrumentation
	Software Randomization Library
	Conclusion
	Conclusion

