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PROARTIS 

 

 Project funded by the European Commission under FP7 (2011–2013). 

 Probabilistically Analysable Real-Time Systems 

 

 Demonstrated how using probabilistic techniques can aid in the timing analysis 
of complex software systems 
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PROARTIS 

 HW is not predictable any more. SW is more and more complex 

 

 Intuition is that the randomness of the timing behaviour of a system can be 
exploited to enable new forms of timing  analysis 

 

 If the system behaviour can be characterised bottom-up as random behaviour, 
then probability theory can be used to predict the overall behaviour of the 
software and its likelihood of exceeding assigned bounds.  



PROARTIS for Space 

 How to use multi-core processors (NGMP) in an effective way 

 While achieving adequate levels of guarantee of the timing correctness 

 Investigate the choice of scheduling and schedulability analysis for NGMP 

 Use of software randomisation to enable probabilistic timing analysis 

 Hardware support for observing timing behaviour 

 Improve tool support for timing analysis on NGMP 

 



Multiprocessor Scheduling 



Transition to multiprocessors 

 Uniprocessor’s body of knowledge does not directly translate to 
Multiprocessors 

 P4S surveyed scientific literature for specific solutions for the use of 
multiprocessor systems in embedded critical systems 

 Find an efficient and analysable scheduling algorithm where 

 Efficient : low overhead, exploits most of the processing power 
 Analysable : is the system schedulable?, account for overhead 

 

 Find an efficient and analysable way to share resources (e.g., memory) where 

 Efficient : low overhead, minimizing blocking on rivals 
 Analysable : accounting for blocking time and overhead 



Multiprocessor scheduling paradigms 

 Global schedulers 
 PROS: idle only when there is no task to schedule (work conserving) 

 CONS: high overhead, central control bottleneck 

 Partitioned schedulers 
 PROS: reuse lots of uniprocessor knowledge, limited overhead 

 CONS: NOT work conserving, task-to-processor assignment problem 

 Hybrid schedulers 
 PROS: generally achieve high schedulability 

 CONS: mostly theoretical, very limited ecosystem 



Multiprocessor resource sharing 

 Sharing SW resources is a necessity when collaborative tasks reside/execute on 
different cores 

 Potential parallelism complicates the problem wrt single core settings 

 Different solutions can be deployed 

 Based on non-preemptive sections (Easy implementable, short blocking, defy priority/criticality) 

 Based on priority boosting (Limited blocking, defy priority/criticality) 

 Multiprocessor Resource Sharing Protocol - MrsP makes a class on its own 

 Helping mechanism (migration) to release resources as soon as possible 
 Per-core immediate ceiling to preserve priority/criticality 



RTEMS-SMP MrsP 

 First real implementation on a industry-ready OS 

 Original implementation quite complex 

 Complex data structures, Unused hooks for future implementation of other protocols, … 

 New implementation 

 Not easily extendable for other protocols 

 Smaller and time-composable data structures 

 Simpler interaction with the scheduler 



RTEMS-SMP MrsP 

Modified version  Original version 

 Semaphore release (unlock) procedure: 
 old implementation: dependent on the pending tasks 
 new implementation: constant time 



RTEMS-SMP MrsP 

Modified version  Original version 

 Semaphore obtain (lock) procedure when nesting resources: 
 old implementation: dependent on nesting depth and pending tasks 
 new implementation: linear time, dependent only on nesting depth 



Software Randomization 



Why Software Randomization? 

Predictable Random 

VisiumCore PROARTIS/PROXIMA 
(FPGA) 

‘Classic’ Timing Analysis Probabilistic Timing Analysis 

SW-Rand 



Software-only Randomization Approach 

 The location of objects in memory (memory layout) determines its location in 
caches (cache layout) 
 The random location of objects in memory makes conventional caches behave as a random ones 
 Random memory layouts  Random cache layouts 
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When is randomization applied? 

 At every program execution a new memory layout is randomly generated 
 Different memory layouts results in different execution times 
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Software-only Randomization Implementation 

 Randomized memory objects 
• Functions (Code Randomisation) 
• Stack frames (Stack Randomisation) 

 
 

 A compiler LLVM1 pass, a run-time library and a memory allocator based 
on TLSF2 has been developed 
• Software framework (Stabilizer3,4) available at https://github.com/ccurtsinger/stabilizer 
 

 SW-Rand is compatible with NGMP and RTEMS 
• some restrictions apply 
 
 

1 The LLVM compiler infrastructure. http://llvm.org/ 
2 TLSF: Dynamic storage allocation for real-time embedded systems. M. Masmano, I. Ripoll, and A. Crespo 
3 Probabilistic Timing Analysis on Conventional Cache Designs, DATE 2013 

4 Stabilizer: Statistically Sound Performance Evaluation, ASPLOS 2013 
 

 

https://github.com/ccurtsinger/stabilizer
http://llvm.org/


Code Randomization 

 SW-Rand randomizes code at the function granularity 

 SW-Rand request enough memory to be able to allocate the function code and 
to hit in any cache line 
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Stack Randomization 

 SW-Rand randomizes the stack by making it non-contiguous 
• Each function call moves the stack to a random location 

 

 On every call, the function loads its stack frame address from a frame table 



Tool support for NGMP 



NGMP Tool Support 

 Tool support for timing analysis of NGMP 
 

 Quad-Core 32-bit LEON4 SPARC V8 processor 
 

 NGMP Tracing Capabilities + Data Logger 
 

 Timing analysis tools 

 RapiTime (PROARTIS/PROXIMA extension) 
 RapiTask (multi-core extension) 

 

 



Data Logger for NGMP 

 Based on Rapita Systems RTBx-1221 

 Capture execution trace via GPIO 
 

 

 

 Each core write to 8 pins of GPIO via special opcode 

 Recorded all at once as 32 bit data by RTBx 
 Some post processing is required 



Execution Trace 

 Load/Store to alternate address space identifier (ASI) 0x80 and above lead to 
propagation of part of instructions to the trace output (8 bits per core). 

 

 

Trace output = inst(7:0) when: 
 rd  = don’t care 
 op3  = LD*A/ST*A 
 rs1  = don’t care 
 i  = 0 
 asi(7)  = inst(12) = 1 

 



Execution Trace 
 Support was also added to filter the on-chip instruction trace buffer on 

load/store alternate instructions. 

 This allows instrumentation points to be recorded in the trace buffer and the 
data can then be continuously dumped through a high-speed debug link and 
fed into Rapita’s toolchain. 

 More performance counters to measure: bus congestion, L2 cache events, etc. 

 All improvements generated by this project for the NGMP are now 
included in the NGMP (GR740) ASIC. 



Trace visualisation 

 Visualisation of multicore traces and RTOS schedule 

 RapiTask 

 Traces from NGMP are filtered and processed 
by RapiTask to produce a graphical view of the 
schedule as it happened. 

 It is also possible to show the execution of  
individual functions within each task 

 This view can be synchronized with the timing 
analysis view from RapiTime 

 Allows to view of the multicore scheduling 
 

 



Multicore Trace Visualisation 



Timing Analysis (RapiTime) 



PROARTIS: MBPTA 

 Derived from a branch of Extreme Value Theory (EVT)  

 EVT allows predicting the shape 
of the tail of a distribution of  
execution times 



RapiTime + MBPTA 

 EVT ‘tail extension’ 



Industrial Case Study 



Gaia Mission 
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Gaia VPU 

 

• Each row of CCD Plane is controlled by Video Processing Unit (VPU) 
 

• Each VPU embed an instance of the gaia vpu software with specific parameters 
 

• Stars cross over each CDD thanks to spacecraft slowly rotating 
 

• Each group of CDD gets specific information on stars shifting and properties  
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Software cycle 

• Samples from CDD each TDI (1 ms) 
• Command for TDI n must be transmit for TDI n-2 
• Samples arrive to VPU in TDI n+2 
• To manage time constraints, data are buffered 
• Data buffered are indexed by TDI 

 

TDI pulses

TDI n-4 TDI n-2TDI n-3 TDI n-1 TDI n TDI n+1 TDI n+2 TDI n+3 TDI n+4
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Use case 

• Simulator running on Linux to generate input data 
• DMA “emulated” via SpW RMAP 



Execution platform 

 Runs on NGMP target 
 SpW on mezzanine 
 RTEMS SMP with MTAPI library 

 

Core 0 

RTEMS SMP 

MTAPI 

Core 1 Core 2 Core 3 

Task A Task A Task A Task A Task A Task B Task A Task A Task C Task A Task A Task D 



Instrumentation 

 Hardware 
 8 bits per core 
 Output through GPIOs 
 Almost no overhead 

 Instrumentation points added automatically by 
RapiTime before compilation 
 

 Several instrumentation profiles 
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Software Randomization Library 

 Status : 
 Compilation chain working 
 Errors at runtime 
 Bugs under investigation 

 Limitations :  
 RTEMS syntax not supported 
 No Dynamic memory allocation 
 Only O0 supported  
 C++ support needed 

 

 



Conclusion 

 Very challenging use case 
 Complex software (Full application + RTEMS) 

 SMP application 

 Good progress but some work remaining 
 

 Randomization library still under work 
 

 Instrumentation for Timing Analysis is working 
 Ready for gathering results 

 



Conclusion 

 To learn more about this topic: 

 

PROXIMA Industrial Workshop 
28th June 2016 

(http://www.proxima-project.eu) 
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