

Mobile Procedure Viewer Short Duration Mission

mobiPV-SDM

4000110425/14/NL/AT

Final Presentation

Space Applications Services, Belgium

Keshav Chintamani – Project Manager

Boris Van Lierde – Project Engineer

Michel Ilzkovitz - Contracts Officer

ESA/ESTEC

Mikael Wolff - Technical Officer

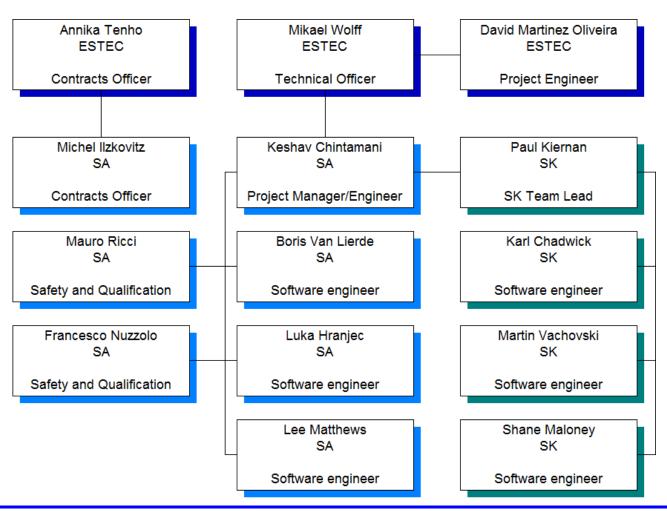
David Martinez Oliveira – Project Engineer

Skytek, Ireland

Paul Kiernan - Team Lead

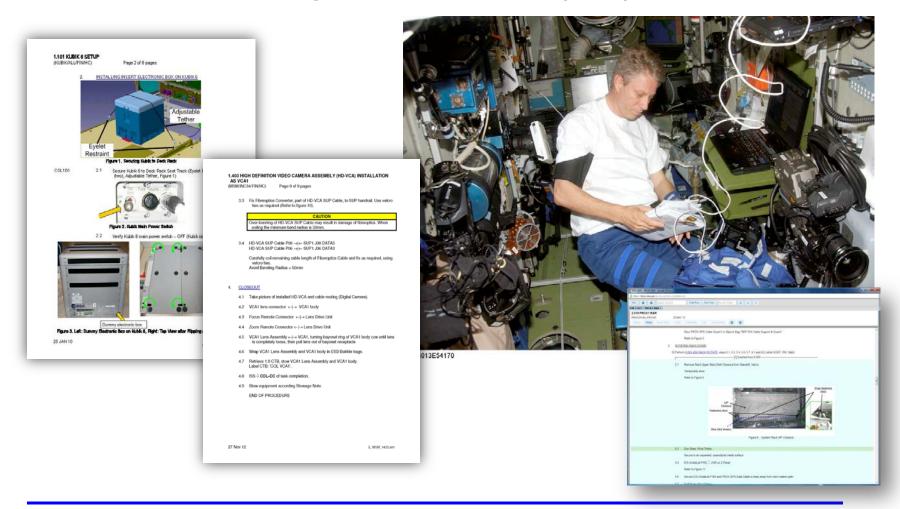
Karl Chadwick – Project Engineer

Martin Vachovski – Project Engineer



Aim

- Demonstrate the benefits of mobiPV for standalone and crew-ground collaboration in the ISS environment
- Target: ESA Short Duration Mission (SDM), aka IRISS in September 2015
- Previous activity mobiPV GSTP funded for baseline system implementation
- Related objectives:
 - Raise mobiPV GSTP prototype to TRL 7 for software and hardware
 - Validate mobiPV space-ground communication
 - Prepare Engineering, Training and Flight Models of COTS hardware
 - Crew evaluation of all mobiPV features and configurations on ISS
- Project Start: December 2013
 Project End: November 2015



Team

The Operations Data File (ODF)

On-board Limitations

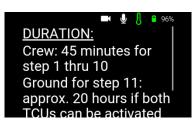
- Crew mobility
 - No mobile procedure solutions onboard
 - Crew cannot be "tethered" to laptops
- Collaborate needed at many levels
 - Troubleshooting
 - Status of procedure (current step is?)
 - Shared control of procedures
 - Media file exchange to support tasks
 - Telepresence (video, audio)
- Ground views live "video" of crew difficult to get "first person" view of workspace
- Dedicated real-time space-ground audio

mobiPV Flight and Ground Segment

Smartphone

Google Glass

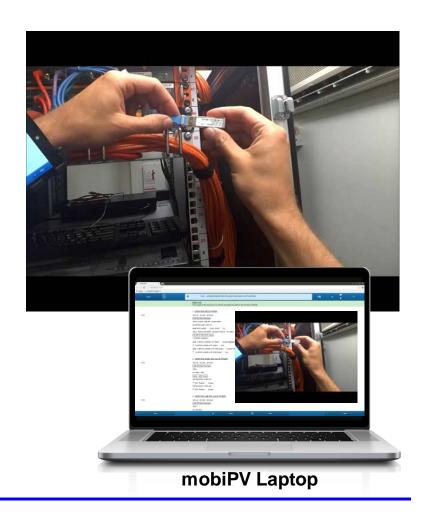
mobiPV Laptop

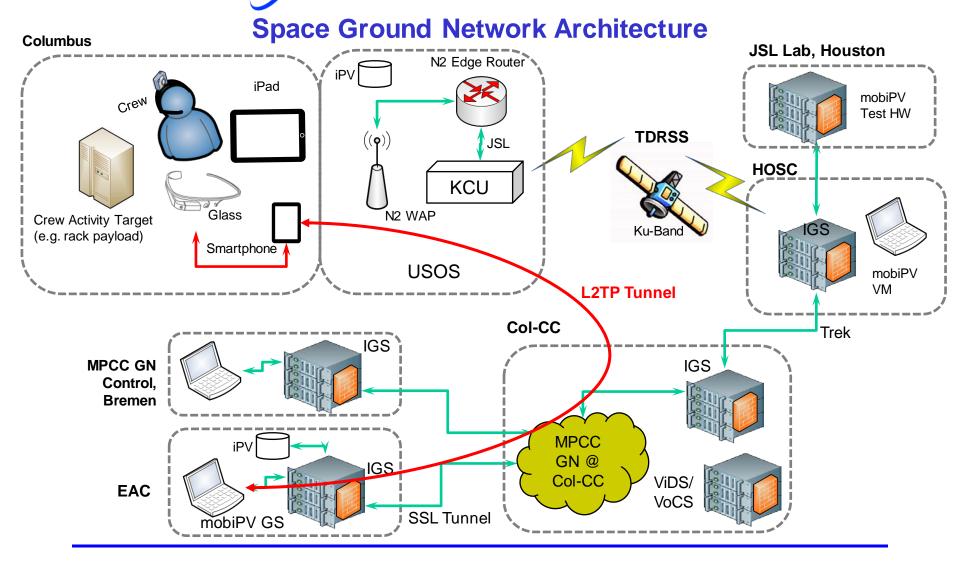

iPad

* iPad is NASA supplied hardware

mobiPV Standalone Features

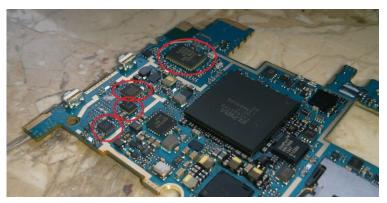
- Procedure Viewing on
 - Wrist mounted smartphone
 - Heads-up on Google Glass
 - iPad
- Image, audio, video, text notes
- Speech recognition for procedure navigation

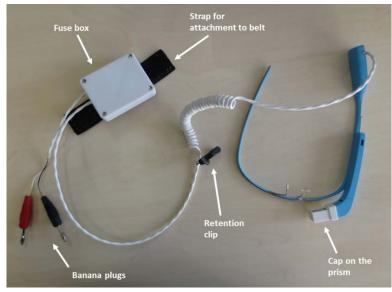




mobiPV Collaborative Features

- Live streaming of audio and video between space and ground
- Real-time follow of flight procedure step on ground
 - The "Master-Slave" mode
- Remote control of procedures
- Sharing of notes associated to procedure step between flight and ground


Network Testing and Challenges


- Architecture had to be updated quite late due to new constraints in MPCC
 - TCP connections cannot be made from space to ground
- Solved by encapsulating all traffic inside L2TP tunnel between FS and GS
- E2E network tests had mixed success (EAC to HOSC, EAC to JSL Lab, local tests in Bremen)
 - GS to FS connectivity over tunnel verified
 - Disconnections, insufficient bandwidth for real-time video

Hardware Qualification

- All hardware COTS
- Major challenges
 - RF (Bluetooth, WiFi, GSM)
 - Internal batteries
 - Materials glass, plastics
 - Charging
- LG provided a lot of support
- Limited support for Google Glass
 - ESTEC modified Glass with external NASA rechargeable battery

Flight Hardware

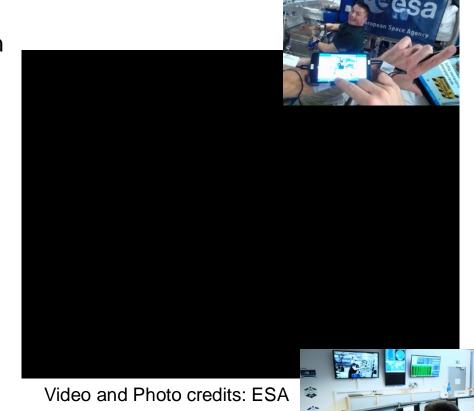
LG Nexus 5

Launch Container

User Evaluations

- mobiPV benefited from enduser involvement!!
 - Crew-members, EuroCom, Crew Instructors, USOC
- Various user workshops and evaluations organized (>5)
- Tested in Neemo20!
- Tested on the ISS!

Neemo20


- NASA Extreme Environment Mission Operations (NEEMO)
- Series of analog missions conducted in underwater NASA Aquarius habitat
- mobiPV tested by ESA, NASA and JAXA astronauts during Neemo20
- Successfully tested all features between MCC and Aquarius

IRISS On-board Demonstration

- Limited to 1 hour due to mission priorities
- Only tested smartphone and iPad (backup configuration)
- Results
 - Procedure & sync worked
 - Note sharing worked
 - iPad worked
 - Video streaming partially worked
 - Audio did not work
 - Network bandwidth limitations

Main Findings and Feedback from Crew

- Most liked the concept of a lightweight, hand-held procedure viewer
- Nobody liked the cabling setup for the wired configuration
- Personal preferences for a tablet display vs a smartphone
- Voice recognition still a major issue reliability
- Mixed opinions on Google Glass (no on-board data available)
 - Limited display room, heating issues
 - Setup time induced by modifications
- All liked the ability to quickly sync procedures, share pictures, videos
- Real-time first-person video Ground specialists love it. Crew find its more useful for ground than flight

Future Work

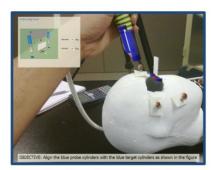
- Potential improvements to the baseline:
 - Separate audio and video streams –multi-user voice loops
 - Remove "dialing" feature and have drop-down lists of all available cameras
 - Reduce video streaming latency & bandwidth Hardware H264
 - Swap wired camera and audio for wireless
 - More "synchronization" with Google Glass and Smartphone GUIs
- Future use-cases
 - Assembly, integration and testing (AIT)
 - Robotics -> Rover control
 - Telemetry and tele-commanding
 - Space medicine (telemedicine included)

Questions?

THANK YOU!

Related Demonstrators and Experiments

CRUISE: speech recognition technology for procedure navigation



The CAMDASS Desktop Application

CAMDASS Hardware

AR guidance for probe positioning

spaceapplications

CAMDASS: AR for crew health diagnosis

mobiPV Final Presentation 12/7/2015