OHB System AG Christian Westendorf 08/12/2015, ESA-ESTEC

SPACE SYSTEMS

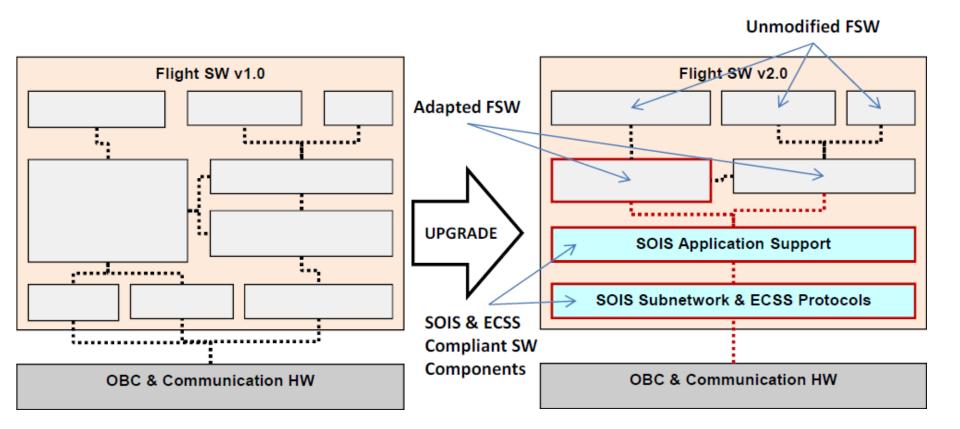
SAVOIR Communications Architecture – OHB Final Presentation

Agenda

- Background, Purpose and Objectives
- Tasks and Milestones
- FSW V1.0 versus FSW V2.0
- Roadmap for a Fully SOIS and ECSS Compliant FSW V2.0
- Lessons Learned and Conclusions
- Future use of SOIS Services at OHB

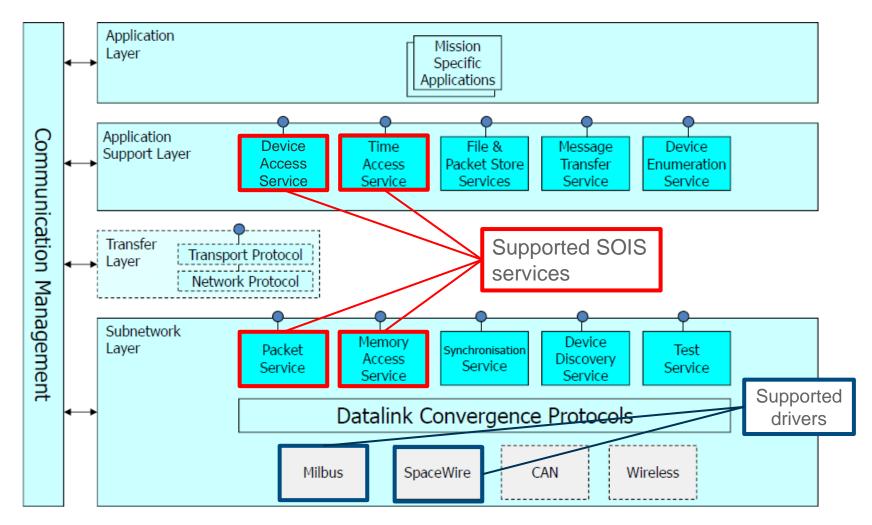
SPACE SYSTEMS

Background, Purpose and Objectives



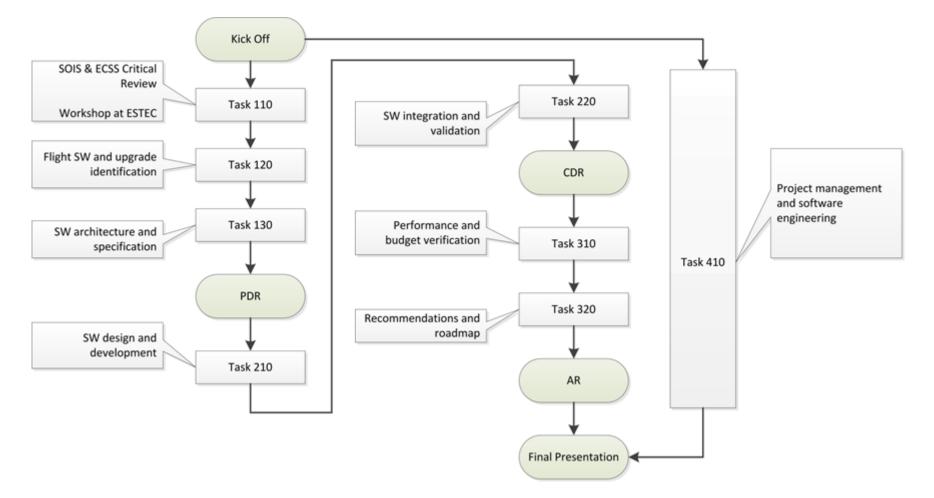
Purpose and Objectives

- Critical review of the applicable SOIS and ECSS standards.
- **Selection** of the flight SW to be modified (FSW V1.0).
- Define the **architecture** of the upgraded flight SW (FSW V2.0).
- **Design and develop** the specified SOIS and ECSS compliant SW.
- Validate and verify the performance of the upgraded flight SW on a SVF.
- Define the **roadmap** for an operational flight SW that is fully compliant to the applicable SOIS and ECSS standards.



Transition from FSW V1.0 to FSW V2.0

SOIS Communication Architecture



SPACE SYSTEMS

Tasks and Milestones

Task Overview and Workflow

Milestones Overview

Milest one	Task(s)	Achievements	Timeline
PDR	110, 120, 130 and 410	 Critical SOIS & ECSS Review. Workshop at ESA-ESTEC. Identification of the FSW V1.0 Selection of FSW V1.0 upgrades. SW requirements specification. SW architecture document. 	T0 + 5 Month
CDR	210, 220 and 410	 SW design document. FSW V2.0 Unit- and validation tests. 	T0 + 13 Month
AR	310, 320 and 410	Performance and budget verification.Recommendations and roadmap.	T0 + 15 Month
FP	410	Final Presentation.	T0 + 18 Month

SPACE SYSTEMS

FSW V1.0 versus FSW V2.0

How to Compare the FSWs

- All tests on the same simulator.
- Same compiler and the same compiler flags.
- Compare the FSWs via:
 - Memory budget comparison.
 - Performance tests in different scenarios.
 - Performance tests SOIS service (FSW V2.0) <-> FSW V1.0 feature.

Hardware

- ERC32 CPU with 20 MHz (14 MIPS at 32 Bit processor word size).
- 6 MiB RAM plus 2 MiB communication RAM.
- 3 MiB EEPROM (split into two banks with 1.5 MiB).
- 512 KiB SGM RAM.
- 256 KiB SGM EEPROM.

Memory Budget Comparison

Memory	FSW V1.0	FSW V2.0	Alteration
Binary Size	1040 KiB	1141 KiB	+6.8%
Text Section (PM EEPROM)	782 KiB	890 KiB	+7.2%
User Data (PM RAM)	1573 KiB	1586 KiB	+0.8%
Runtime Allocation (PM RAM)	2613 KiB	2727 KiB	+1.9%
Communication RAM	1397 KiB	1397 KiB	0%
SGM RAM	253 KiB	253 KiB	0%
SGM EEPROM	39 KiB	39 KiB	0%
PM EEPROM total	69.3%	76.1%	+6.8%
PM RAM total	69.8%	71.8%	+2%

SW Service Memory Usage

FSW Module	FSW V1.0 [KiB]	FSW V2.0 [KiB]	Alteration (FSW V1.0 to FSW V2.0) [KiB]	
Time Access Service	-	0.5	-0.5	
On Board Time Service	12	11		
Packet Service	-	6.7		
Memory Access Service	-	17.2	+8.5	
MilBus Driver	34	31.5		
SpaceWire Driver	19	6.1		
Device Access Service	-	11.4	2.6	
Data Management Service	15	-	-3.6	

FSW Performance Comparison (Part 1/2) – Overall FSW Performance

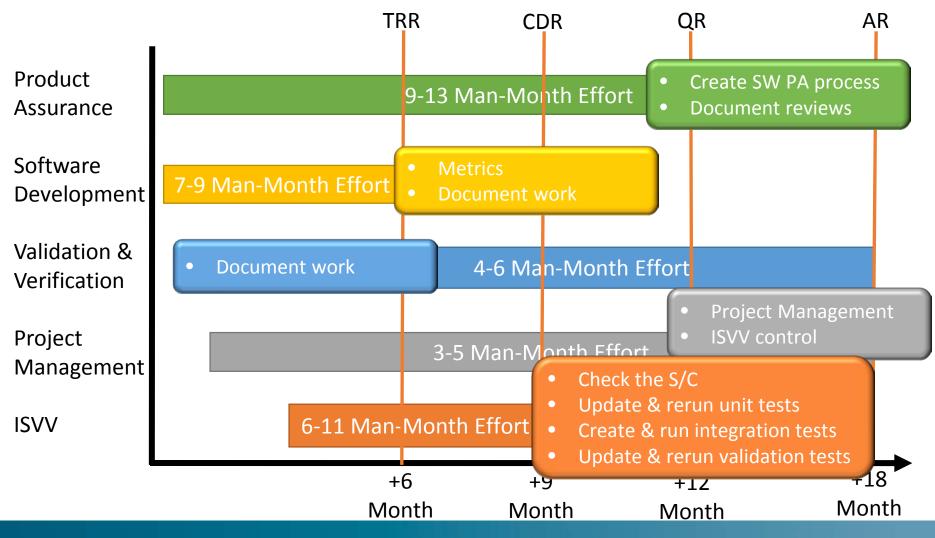
Scenario	CPU Load FSW V1.0	CPU Load FSW V2.0	Scenario Description
Start-Up	38%	39%	Early start-up phase plus unit activations / initial operational activities.
Basic	24%	24%	Subsystems are in basic mode, Payload is OFF and AOCS is in SAM.
Nominal	26%	27%	Subsystems are in basic mode, Payload is ON, basic monitoring is ON and AOCS is in EAM.
Stress	36%	37%	Subsystems are in basic mode, Payload is ON, AOCS EAM and all monitorings are switched ON (stress).

FSW Performance Comparison (Part 2/2) – SOIS Service Performance Tests

Test	Tested Service	CPU Load FSW V1.0 [%]	CPU Load FSW V2.0 [%]	CPU Load Difference [%]
1000x SpaceWire Read	MAS	23.964	24.942	+0.978
1000x SpaceWire Write	MAS	23.286	23.964	+0.678
1000x Data Pool Read (500x MilBus & 500x Virtual Data)	DAS	1.9575	2.445	+0.4875
1000x Data Pool Write (500x MilBus & 500x Virtual Data)	DAS	1.467	2.445	+0.978
1000x Get Time	TAS	1.4685	2.4465	+0.978
100x DBTP Read	PS	6.3570	6.6275	+0.2705
100x DBTP Write	PS	7.8255	8.3145	+0.489

SPACE SYSTEMS

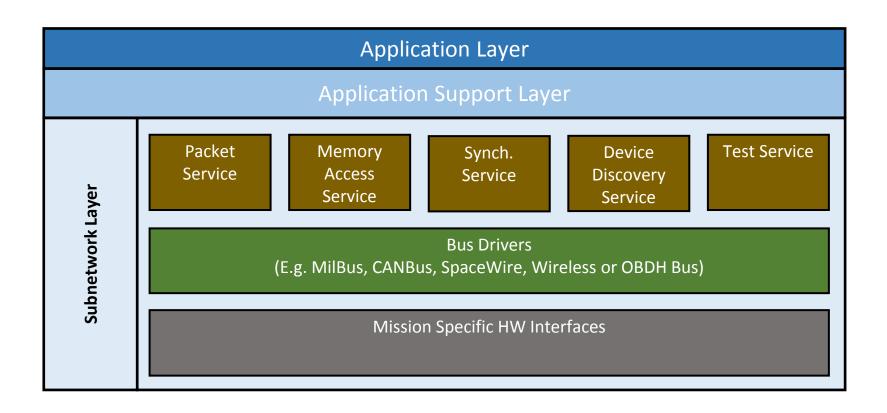
Fully SOIS and ECSS Criticality Level-B Compliant FSW V2.0 Roadmap



Requirements

- Fully ECSS-E-ST-40 & ECSS-Q-ST-80 criticality level-B compliant.
 - Including ISVV
- Base on the ECSS tailored FSW V2.0.
- 4 Roles:
 - Software Project Manager.
 - Software Product Assurance Manager.
 - Software Developer.
 - Software Validation and Verification Engineer.

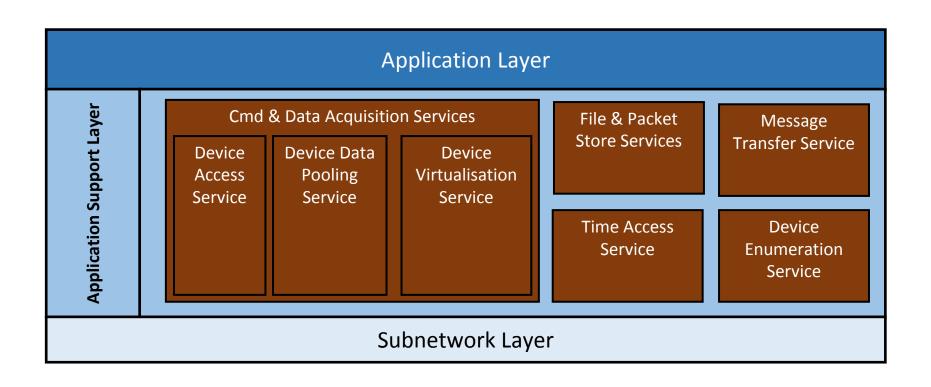
Timeline (Fully SOIS & ECSS Compliant FSW V2.0)



SPACE SYSTEMS

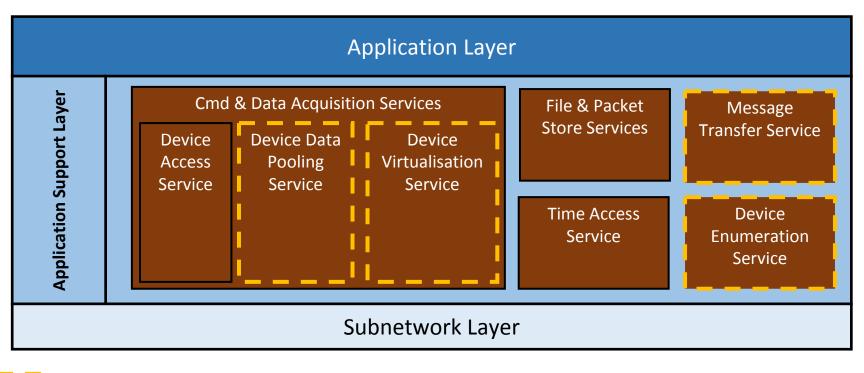
Lessons Learned and Recommendations

SOIS Architecture – Subnetwork Layer

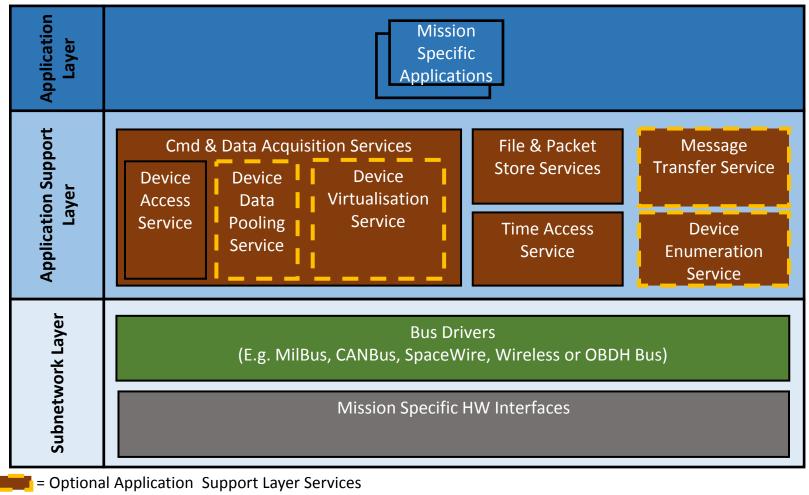


Recommended SOIS Architecture – Subnetwork Layer

	Application Layer
	Application Support Layer
ork Layer	Bus Drivers (E.g. MilBus, CANBus, SpaceWire, Wireless or OBDH Bus)
Subnetwork Layer	Mission Specific HW Interfaces



SOIS Architecture – Application Support Layer


Recommended SOIS Architecture – Application Support Layer

- = Optional Application Support Layer Services
- = Application Support Services

Recommended SOIS Architecture

= Application Support Services

Summery: SOIS Services

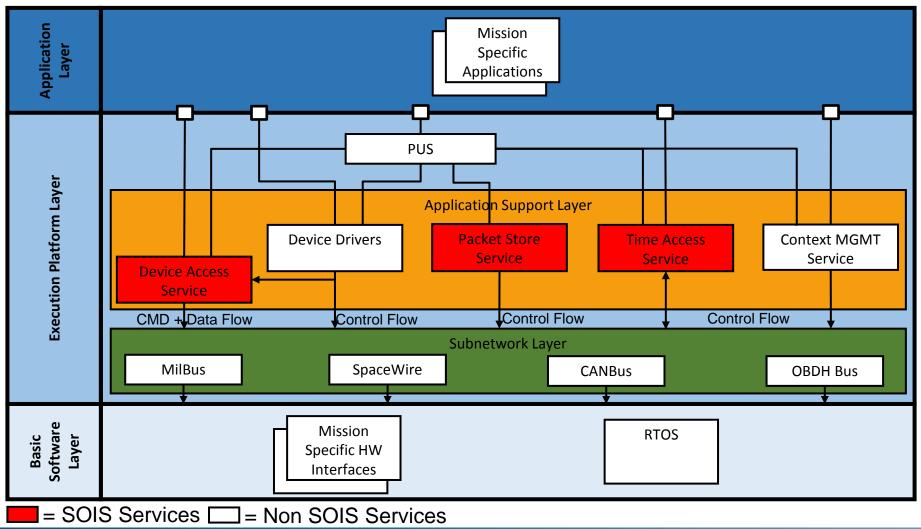
- The SOIS services that are planned to be used at OHB in the future are:
 - Time Access Service.
 - Packet Store Service.
 - Device Access Service.
- All other SOIS services are not considered to be used in future by OHB.
 - Subnetwork layer services are part of the bus drivers.
 - No current use cases for the other application support layer services.

Summery: SOIS Layers

- In general, the three SOIS layers architecture is good concept.
- The subnetwork layer should not to be used at it is defined in the SOIS standard at the moment. -> Make is at least optional.

Summery: Project Issues

- To adapt an existing architecture (FSW V1.0) leads to less efficient solutions and to non meaningful performance statements.
- The FSW V2.0 is slower wrt. the performance and has a bigger size.
- It is recommended to use the SOIS concept in a new developed flight software, where the concepts can be developed from scratch without any legacy issues.



SPACE SYSTEMS

Future use of SOIS Services at OHB

Possible Future OHB Architecture

Page 30

Thank you for your attention!

Contact:

• christian.westendorf@ohb.de

Page 31