
Institut Supérieur de l’Aéronautique et de l’Espace

Introduction of model checking
facilities in TASTE

ESA Final Days
 Jérôme Hugues, ISAE/DISC

12/08/2015 Model checking facilities in TASTE 1

1. TASTE process, code generation perspective
2. Introducing model checking @ runtime
3. Conclusion

Agenda

12/08/2015 Model checking facilities in TASTE 2

> Goal: build state space of a TASTE-CV model (AADL) to
support simulation and model checking (MC) objectives

> Rely on Ravenscar Computational Model + AADL semantics
for port communication
» Ravenscar = static set of tasks, ports, deterministic scheduling

with worst case scenario
» AADL semantics = precise timing for communication instants,

and associated thread dispatch
> Combine these two information to build component state, and

then system’s history from a set of external inputs

TASTE COO3 objectives

12/08/2015 Model checking facilities in TASTE 3

TASTE process in a nutshell

AOCS

Control law 10 Hz

sensor data

actuators

to FDIR
Mode Management

State Machine

Deadline: 3 ms
WCET: 1 ms

Simulink
LEON2

SDL
LEON2

FDIR-command ::= ENUMERATED {
 safe-mode,
 switch-to-redundant,
 ...
}

AOCS-tm ::= SEQUENCE {
 attitude Attitude-ty,
 orbit Orbit-ty,
 ...
}

AADL and ASN.1
are combined to provide a formal,
precise, and complete description

of the system architecture and data.

process ABB1

idle

PI1

RI1
(myData)

wait_ABB2

wait_ABB2

PI2

idle

FBY

1 false stop

status start

12/08/2015 Model checking facilities in TASTE 4

TASTE process in a nutshell

 Generate a software
real-time architecture

Task 1

Task 3
Task 4

Task 2
Task 1

Task 3
Task 4

Task 2

Task 1

Task 3

Task 2
Task 1

Task 3

Task 2

 Generate glue code
to put everything
together on a real-time
operating system

12/08/2015 Model checking facilities in TASTE

 Generate “application skeletons”
in Simulink, SDL, C, and Ada

system basic_fv

USE Datamodel;

SIGNAL basictotc (T_TM);

SIGNAL tcommand (T_HLTC_PLUS);

SIGNAL basictocontrol (T_CONTROL_IN);

SIGNAL controldow ntobasic (T_CONTROL_DOWN_OUT);

SIGNAL controluptobasic (T_CONTROL_UP_OUT);

SIGNAL cyclicactivationimplementation;

procedure aplc_basic_op COMMENT '#c_predef';FPAR
 IN thrusters_opening T_THRUSTERS_OPENING,
 IN pfs_iw m_arming_relay_status_on T_PFS_IWM_ARMING_RELAY_STATUS_ON,
 IN pfs_hltc_red_button_is_on T_PFS_HLTC_RED_BUTTON_IS_ON,
 IN msu_id T_MSU_ID,
 IN pfs_ew m_msuy_msux_hs T_PFS_EWM_MSU_MSU_HS,
 IN f tcp_health_status T_FTCP_HEALTH_STATUS,
 IN pfs_ew m_dtg12_msu T_PFS_EWM_DTG12_MSU,
 IN hltc T_HLTC,
 IN end_boost_is_reached T_END_BOOST_IS_REACHED,
 IN sun_is_aimed T_SUN_IS_AIMED,
 IN/OUT pfs_ew c_msu_pde_t T_PFS_EWC_MSU_PDE_T,
 IN/OUT pde_cmd_a T_PDE_CMD_A,
 IN/OUT dpu_cmd T_DPU_CMD,
 IN/OUT set_pfs_ew c_msu_dtg_mode_coarse T_ON_OFF_CMD,
 IN/OUT hltm T_HLTM,
 IN/OUT pfs_ew m_msux_msuy_hs T_PFS_EWM_MSU_MSU_HS,
 IN/OUT cam_mode T_CAM_MODE,
 IN/OUT controller_to_be_activated T_CONTROLLER_TO_BE_ACTIVATED,
 IN/OUT navigation_output T_NAVIGATION_OUTPUT;
 EXTERNAL;

procedure mysimulink COMMENT '#c_predef';FPAR
 IN my_in T_FOR_SIMULINK_IN,
 IN my_in2 T_control_in,
 IN/OUT my_out T_FOR_SIMULINK_OUT,
 IN/OUT my_out2 T_Control_in;
 EXTERNAL;

c

tcommand,
controldowntobasic,
controluptobasic,
cyclicactivationimplementation

basictotc,
basictocontrol

basic_fvAll these steps are automated, thanks
• Languages with good power of expression

• AADL for architecture, ASN.1 for data typing,
• SDL, Simulink, SCADE, C, Ada, etc. for behavior

• Tool to support this approach
• TASTE toolchain (editors, code generators, orchestrator)

In the following, we focus in the Concurrency view level, leveraging AADL

5

Lead on the Ocarina toolset
Development of AADL:
4 books, tutorials, 30+ papers
Code generation :
Ada, C (POSIX, ARINC653, RTEMS)

TRL 6-7 with ESA (ECSS E-40)
SPARK, ACSL TRL 2-3
Scheduling: Cheddar, MAST
External metrics: stack usage
(gnatstack), WCET (Bound-T)
 TRL 4-5 with ESA
Architectural
Constraints/Requirements
checks
TRL 6, being standardized
Model checking: Petri Nets, LNT
TRL 2 (PhD contributions)
System engineering: SysML,
Capella TRL 2-3 (with IRT-SE)

Research on AADL @ ISAE

Link to code/model

Non-functional properties

Architectural patterns

Architecture helps you focusing on the actual system

AADL covers many parts of the V cycle: model checking, scheduling,
safety and reliability and code generation

12/08/2015 Model checking facilities in TASTE 6

Ocarina: an AADL code generator
http://www.openaadl.org

> Ocarina is a stand-alone tool for processing AADL models
» Free Open Source Software (as in *Free* speech and *Free* beer)
» Command-line, or integrated third-party tools

• OSATE (CMU/SEI), TASTE (ESA), AADL Inspector (Ellidiss)
> Code generation facilities target PolyORB-HI runtimes

» Ada HI integrity profiles, with Ada native and bare board runtimes
» C POSIX or RTEMS, for RTOS & Embedded
» C ARINC653 for avionics systems

> Generated code quality tested in various contexts
» For WCET exploration, support for device drivers, …

> Written to meet most High-Integrity requirements
» Follow Ravenscar model of computations, static configuration of all elements

(memory, buffers, tasks, drivers, etc.)
> Contributions from PhD students, partners (SEI, ESA)

12/08/2015 Model checking facilities in TASTE 7

> Target Ada Ravenscar and High-Integrity runtimes
> Based on the Ravenscar & HI Ada profiles

» Meets stringent requirements for High-Integrity systems
» Checked at compile-time by Ada compiler, GNAT
» On-going work to support SPARK/Ada

• Proof of absence of Run-Time Errors, contract-based programming
> Supports native, RTEMS, MaRTE OS, Ada bare-board
> Easy to retarget thanks to Ada portability

» Reduced to configuration of the compilation chain
» Any Ravenscar-capable runtime should work out-of-the box
» GNAT support allows integration of 3rd-party API, e.g. ARINC653

Ocarina runtimes: PolyORB-HI/Ada

12/08/2015 Model checking facilities in TASTE 8

Ocarina runtimes: PolyORB-HI/C

> Follow the same design principles from the Ada runtime
» No memory allocation: static resources, threads, etc.

> Set of primitives to build all AADL entities (threads, ports)
> Set of macros to adapt runtime to target-dependent APIs

» Supported: RT-POSIX, C/RTEMS, VxWorks classic API, Xenomai,
Windows, FreeRTOS, ..

> Tested on different configurations:
» Restricted libc: GNU/Linux on Nintendo DS and Nokia 770
» POSIX RTOS: Linux, RTEMS, eLinOS (Linux)
» RTEMS, VxWorks 6.2

> One mode to target directly ARINC653 APEX
» Tested with DDC-I DeOS and WRS VxWorks 653

12/08/2015 Model checking facilities in TASTE 9

Generic approach for model checking

12/08/2015 Model checking facilities in TASTE 10

> A TASTE CV model is made of
» Interconnected components: interfaces, links, bindings to

hardware platforms (buses, processors)
» Implementation of components points either to

• Other subcomponents (hierarchical model)
• Leaf model (SDL, SCADE, etc.)

> Relevant properties
» Observable set of states:

• Monitored state variables of a component, from its interface
• Content of messages exchanged

> Ravenscar MoC defines rule to update observable state
» dispatch triggers, communication instant, computation states, …

Point of interest for MC

12/08/2015 Model checking facilities in TASTE 11

> Attach interceptors on ports
» State = request + meta data for building full state space

Example

12/08/2015 Model checking facilities in TASTE 12

> A event is a “step” in the execution of the model
> A state of a component is defined by

» σ is the step of the event consumption at which the state is created.
The event can either be the dispatch of a periodic thread or the
consumption of a event in an event or an event data port;

» ω is the occurrence of the hyperperiod;
» τ is the identifier of the dispatched task or event consuming task;
» ε is the port identifier of the consumed event (empty if it is a periodic

dispatch);
» υ0...υn is a tuple of values contained by the entry ports of the system,

where n the global number of entry ports of the system.
> Parameters ω, τ will be used to rebuild the full history from a set of

traces of the system

Formal definition of a state

12/08/2015 Model checking facilities in TASTE 13

> Use a hybrid approach, combining MC and code generation
» MC: interceptor on functional block viewed as black box

• Only capture inputs/outputs/internal state + meta-data (timestamp, id)
• Build a state space using an optimized hash function (model specific)

» Code generation used to
• Tune the hash function, build atomic state
• Place interceptors on all or selected components
• PolyORB-HI/C runtime (simulation + trace) or MC kernel (exhaustive)

» Need halting condition
• Driven by users (e.g. as part of observers, scenarios)
• Or derived from scheduling (e.g. stop after one hyper period)

> Controlled by Python API, for future integration with TASTE
ecosystem: TASTE TM/TC tool, automated testing, etc.

Implementation path

12/08/2015 Model checking facilities in TASTE 14

> Main goal: reduce overhead on the generated code both in
time and memory dimensions

> TASTE toolchain has detailed information to allocate all
resources (buffers, marshallers, tasks, etc.)
» Need to fine tune generation of state space, combination of data

types + graph to store history of executions
> Solution: exploit meta-programming from C++ to instantiate at

compile-time all required resources for monitoring
» Allow for a clean separation between the monitoring engine and

the existing run-time and code generation
» Rely on Boost and C++11 meta-programming (introspection)

facilities to allocated statically all types
• no memory allocation required, can be embedded for logging

Implementation of the MC engine

12/08/2015 Model checking facilities in TASTE 15

Managing time

12/08/2015 Model checking facilities in TASTE 16

> Generic timed MC
 does not scale, need abstractions
> Computing number of task

dispatch per hyper-period
» Solution: use outputs from

cheddarkernel (TASTE VM) + AADL
to build dependency graph,
triggering instants and worst case
scenario for number of states per
hyperperiod

> Bounded by the number of worst-
case number of context switches
on a hyper-periodic of a system

> Time abstracted thanks to
Ravenscar MoC

> Built from chain of events:
» E.g. T2 dispatched

because of events in one of
its predecessor

» No need to manage time
explicitly

> Rely on efficient hashing to store states
» Decouple graphs connecting states (history) from repository of states

(actual values)
> Benchmarks from Ocarina tests

> Thanks to hashing, number of states reduced to true difference in

values in ports, no impact on timing
» Graphs is generated once from worst-case scenario on hyperperiod,

number of states depend on monitored data

Benchmarks

12/08/2015 Model checking facilities in TASTE 17

> Monitoring is transparent to user
» One additional configuration to Ocarina code generation to

• Activate logging interceptors in communication API
• Generate type for state from model elements
• Evaluate number of state and allocate memory for storing the graph

associated to the worst-case scenario

> Could be embedded in running application
» Model checking is reduced to advanced non intrusive logging
» Reduced penalty at runtime: storing events done as part of

communication API, only read/write to hash tables

Integration to Ocarina, take 1

12/08/2015 Model checking facilities in TASTE 18

> Default mode of operation is to use OS primitives for tasking
» Running the system in operational scenario, for functional testing
» Not adequate for model checking

> Need to give control to user to model-level debugger
» Start/stop/step in model elements: tasks queues
» Inject events, remove events, e.g. fault injection, introspection
» Control of the clock to “pause” the model

> Introducing “user-mode” OS-like primitives

» AADL runtime uses regular OS system calls
» Emulate tasking and time management

Interaction with user – step 1

12/08/2015 Model checking facilities in TASTE 19

> Leveraging Linux ucontext.h API
» Definition of “context of execution”, aka thread control block
» Used to emulate context switching, and scheduling policies
» Time managed either using host clock, or emulated using “ticks”

> Defined a new UMthreads target configuration in runtime

» Replace all calls to RTOS to user-mode OS
» Emulate Ravenscar MoC: FIFO_Within_Priorities scheme, iCPP

and absolute delay
» Available as a regular target by user when building its

concurrency view, yet restricted to Linux host

About user-mode OS primitives

12/08/2015 Model checking facilities in TASTE 20

> Need a way to interact with simulated models
» Represented as an instrumented binary application

> Defined a Python API to interact with model@runtime

» Uses SWIG to generate set/get methods to interact with models
• Inject events, monitor queues, advance time, etc.

» A few helper functions to start/stop model, configure logging, etc.

> Provide direct access to internals using the same API
» Thin layer from SWIG, reduce uncertainty: you interact with the

real code, not a simulator using a different code base

Interaction with user – step 2

12/08/2015 Model checking facilities in TASTE 21

Example: a script to test the model

12/08/2015 Model checking facilities in TASTE 22

class TASTEModel(object): # Handler to TASTE model
 def __init__(self):
 # Configuration (not shown)

 def run(self):
 taste_model.init ()

Creating and starting thread running example
My_model = TASTEModel()

Instanciating request factory
reqfac = RequestFactory()

Calling a po_hi_gqueue function to set an in port value
po_hi_gqueue.__po_hi_gqueue_store_in
 (po_hi_gqueue.pc_consumer_k, # id of task
 po_hi_gqueue.consumer_local_data_sink, # port
 reqfac.consumer_global_data_sink_request_init(40)) # value to be sent

> Integration of model checking facilities to TASTE in progress
» Beyond regular model checking using formal methods

> Allow for model-checking@runtime
1. Fine-tuned monitoring facilities

• At runtime for assertion checking
• Or used for model checking on specific scenarios or full exploration
• Log could be dumped to user for off-line processing

2. User-mode tasking API introduced
• Use RTOS for running time-based scnearios
• User-mode tasking for exploration, with time acceleration (no delay)

3. Python API to control model execution
• Inject events, monitor queues, etc.

Summary

12/08/2015 Model checking facilities in TASTE 23

> First step focused on enhancing infrastructure for supporting
model-checking in multiple dimensions
» Logging, in-depth testing and model-checking (state exploration)

> Future directions include
1. Specification of properties and observers

• Follow TASTE approach: property is a functional block (e.g. SDL)
weaved to regular model through inspection point (observer)

2. Integration with testing GUI (TM/TC processing) to provide a
uniform access to model internals at runtimerious dimensions

3. Scenario for testing, inline with project requirements
• Observer for wanted/unwanted situation
• Indication of relevant features to monitor (internal state, ports) to

reduced memory overhead

Future work

12/08/2015 Model checking facilities in TASTE 24

Institut Supérieur de l’Aéronautique et de l’Espace

That’s all folks

12/08/2015 Model checking facilities in TASTE 25

	Introduction of model checking facilities in TASTE�ESA Final Days�
	Agenda
	TASTE COO3 objectives
	TASTE process in a nutshell
	TASTE process in a nutshell
	Research on AADL @ ISAE
	Ocarina: an AADL code generator�http://www.openaadl.org
	Ocarina runtimes: PolyORB-HI/Ada
	Ocarina runtimes: PolyORB-HI/C
	Generic approach for model checking
	Point of interest for MC
	Example
	Formal definition of a state
	Implementation path
	Implementation of the MC engine
	Managing time
	Benchmarks
	Integration to Ocarina, take 1
	Interaction with user – step 1
	About user-mode OS primitives
	Interaction with user – step 2
	Example: a script to test the model�
	Summary
	Future work
	That’s all folks

