Institut Supérieur de I’Aéronautique et de I'Espace

L .
& | -
e y
- '.II
ko -

Introduction of model checking
facilities in TASTE
ESA Final Days

Jerome Hugues, ISAE/DISC

1. TASTE process, code generation perspective
2. Introducing model checking @ runtime
3. Conclusion

TASTE COQ3 objectives

>

Goal: build state space of a TASTE-CV model (AADL) to
support simulation and model checking (MC) objectives

Rely on Ravenscar Computational Model + AADL semantics
for port communication

» Ravenscar = static set of tasks, ports, deterministic scheduling
with worst case scenario

» AADL semantics = precise timing for communication instants,
and associated thread dispatch

Combine these two information to build component state, and
then system’s history from a set of external inputs

TASTE process In a nutshell

to FDIR

AOCS Mode Management
\ /f State Machine) \ A

—

7 —

/ Control law
10 Hz o

sensor data -
Deadline: 3 ms

S
WCET: 1 ms

A
actuators .

g Simulink
N L LEON2)

v

FDIR-command ::= ENUMERATED {
safe-mode, S
switch-to-redundant, A
\\\‘\\ T } ,/’, I/I,
===~ AOCS-tm ::= SEQUENCE {
AADL and ASN.1 attitude Attitude-ty,
are combined to provide a formal, orbit Orbit-ty,
precise, and complete description
of the system architecture and data. }

TASTE process In a nutshell

=FHEE in Simulink, SDL, C, and Ad

I T T YT —

oo W T ® Generate “application skeletons™

l-au I SO o e 1T I T 1Y
——

All these steps are automated, thanks
e Languages with good power of expression

e AADL for architecture, ASN.1 for data typing,

e SDL, Simulink, SCADE, C, Ada, etc. for behavior
e Tool to support this approach

e TASTE toolchain (editors, code generators, orchestrator)

In the following, we focus in the Concurrency view level, leveraging AADL

0 PUT EVETYTIINY
together on a real-time
operating system

Research on AADL @ ISAE

Architecture helps you focusing on the actual system
Architectural patterns

AADL

AADL Dataas
Ada Protected object

AADL Thread as

AADL Process
Ada Task object

as Partition
.Concurrenc view /
/T 24 \ SC_2
/| Link to code/model o
swntdat pot El r a
i 4 . . ‘ -y s
X/ . /_,_,r? P\“U pdate) ; \ / [Read > "'t“'nlul;:' '___'
SC_1 <) S Loca Creaa>
n . * / mmmmmmmmmmesst bject upaam> T TTTTTTITITTST
i Send ur __'" ot~ : /
I v @ - /!
- .,' - !
Send ® oé’ ™ :
PN _ I
— . / SC_3
~N S __,-’
Da;}YQ‘ o/
ev-enl&q on f
-
2/
» / H
-
-/
-/
¥
<
-
-
i

Spmﬂe\-‘ 3

N
\| Constraints/Requirements

Lead on the Ocarina toolset
Development of AADL:
4 books, tutorials, 30+ papers

Code generation :
Ada, C (POSsIX, ARINC653, RTEMS)

TRL 6-7 with ESA (ECSS E-40)
SPARK, ACSL TRL 2-3
Scheduling: Cheddar, MAST

External metrics: stack usage
(gnatstack), WCET (Bound-T)

Architectural

checks
TRL 6, being standardized

Model checking: Petri Nets, LNT

0“.
0“‘
¢
“‘0““4
tihe,
Yeiy
‘e

i - - :
a) [pda t J c," F o
¥ - -
A Loca ; .
Object Cupdate
7 -
/ P
Y A r
r -
/ LEON TSIM

(
{ LEON TSIM

N

,L
N

‘ Non-functional properties

> TRL 2 (PhD contributions)

7

/.
/

Physical view

System engineering: SysML,

Capella TRL 2-3 (with IRT-SE)

AADL covers many parts of the V cycle: model checking, scheduling,
safety and reliability and code generation

Ocarina: an AADL code generator

http://www.openaadl.org

> Qcarina is a stand-alone tool for processing AADL models
» Free Open Source Software (as in *Free* speech and *Free* beer)

» Command-line, or integrated third-party tools
» OSATE (CMU/SEI), TASTE (ESA), AADL Inspector (Ellidiss)

> Code generation facilities target PolyORB-HI runtimes
» Ada Hl integrity profiles, with Ada native and bare board runtimes
» C POSIX or RTEMS, for RTOS & Embedded
» C ARINCG653 for avionics systems
> (Generated code quality tested in various contexts
» For WCET exploration, support for device drivers, ...
> Written to meet most High-Integrity requirements

» Follow Ravenscar model of computations, static configuration of all elements
(memory, buffers, tasks, drivers, etc.)

> Contributions from PhD students, partners (SEI, ESA)

Ocarina runtimes: PolyORB-HI/Ada

> Target Ada Ravenscar and High-Integrity runtimes

> Based on the Ravenscar & HI Ada profiles
» Meets stringent requirements for High-Integrity systems
» Checked at compile-time by Ada compiler, GNAT

» On-going work to support SPARK/Ada
* Proof of absence of Run-Time Errors, contract-based programming

> Supports native, RTEMS, MaRTE OS, Ada bare-board
> Easy to retarget thanks to Ada portability
» Reduced to configuration of the compilation chain
» Any Ravenscar-capable runtime should work out-of-the box
» GNAT support allows integration of 39-party API, e.g. ARINC653

Ocarina runtimes: PolyORB-HI/C

> Follow the same design principles from the Ada runtime
» No memory allocation: static resources, threads, etc.

> Set of primitives to build all AADL entities (threads, ports)

> Set of macros to adapt runtime to target-dependent APIs

» Supported: RT-POSIX, C/RTEMS, VxWorks classic API, Xenomali,
Windows, FreeRTOS, ..

> Tested on different configurations:
» Restricted libc: GNU/Linux on Nintendo DS and Nokia 770
» POSIX RTOS: Linux, RTEMS, eLinOS (Linux)
» RTEMS, VxWorks 6.2
> One mode to target directly ARINC653 APEX
» Tested with DDC-I DeOS and WRS VxWorks 653

Generic approach for model checking

System
initialization

N\

Scheduling

Cheddar

state space
State space exploration
Driven by the
exhaustive simulator

DFS + cache

receive /:%end

internal
state

state machines

properties

Point of Interest for MC

> A TASTE CV model 1s made of

» Interconnected components: interfaces, links, bindings to
nardware platforms (buses, processors)

» Implementation of components points either to

o Other subcomponents (hierarchical model)
 Leaf model (SDL, SCADE, etc.)

> Relevant properties

» Observable set of states:
« Monitored state variables of a component, from its interface
 Content of messages exchanged

> Ravenscar MoC defines rule to update observable state
» dispatch triggers, communication instant, computation states, ...

> Attach interceptors on ports
» State = request + meta data for building full state space

:

J

I
>m m_controller
I

L | u

anakysar_out

from_recaiver

----¥__

——————————

from_tra I'|5-I'|'|i‘|.1.f!r

Formal definition of a state

> Aeventis a “step” in the execution of the model

> A state of a component is defined by

» 0 IS the step of the event consumption at which the state is created.
The event can either be the dispatch of a periodic thread or the
consumption of a event in an event or an event data port;

» W IS the occurrence of the hyperperiod;
» T1S the identifier of the dispatched task or event consuming task;

» €IS the port identifier of the consumed event (empty If it is a periodic
dispatch);

» Uo...Unls a tuple of values contained by the entry ports of the system,
where n the global number of entry ports of the system.

> Parameters w, T will be used to rebuild the full history from a set of
traces of the system

Implementation path

> Use a hybrid approach, combining MC and code generation

» MC: interceptor on functional block viewed as black box
 Only capture inputs/outputs/internal state + meta-data (timestamp, id)
e Build a state space using an optimized hash function (model specific)

» Code generation used to
e Tune the hash function, build atomic state
* Place interceptors on all or selected components
 PolyORB-HI/C runtime (simulation + trace) or MC kernel (exhaustive)

» Need halting condition
* Driven by users (e.g. as part of observers, scenarios)
 Or derived from scheduling (e.g. stop after one hyper period)

> Controlled by Python API, for future integration with TASTE
ecosystem: TASTE TM/TC tool, automated testing, etc.

Implementation of the MC engine

> Main goal: reduce overhead on the generated code both in
time and memory dimensions

> TASTE toolchain has detailed information to allocate all
resources (buffers, marshallers, tasks, etc.)

» Need to fine tune generation of state space, combination of data
types + graph to store history of executions

> Solution: exploit meta-programming from C++ to instantiate at
compile-time all required resources for monitoring

» Allow for a clean separation between the monitoring engine and
the existing run-time and code generation

» Rely on Boost and C++11 meta-programming (introspection)
facilities to allocated statically all types

« no memory allocation required, can be embedded for logging

3 3 ["AADL inspector { CuProy D tor/Al-L
File View Tool s 2
O E L |
2
C653
1 [packa ncsimple_Fkg
2 |PUBLI:

~ | Schedulability |Schedule Table| Consistency | Legality | Metrics | Naming|
= test
imulati

aaaaa

Mo deadline mis

> Generic timed MC 1
does not scale, need abstractions - s s
> Computing number of task s | O R,
dispatch per hyper-period o
» Solution: use outputs from .

cheddarkernel (TASTE VM) + AADL . Time abstracted thanks to

to build dependency graph, Ravenscar MoC

triggering instants and worst case < gyilt from chain of events:
scenario for number of states per » E.g. T2 dispatched

hyperperiod because of events in one of
> Bounded by the number of worst- its predecessor
case number of context switches » No need to manage time
on a hyper-periodic of a system explicitly

> Rely on efficient hashing to store states

» Decouple graphs connecting states (history) from repository of states
(actual values)

> Benchmarks from Ocarina tesis

Example Nb Tasks NbPorts State size (bytes) Hyperperiod size (steps) Trace size (bytes)
ping 2 2 32 753 24192
producer-consumer 4 4 48 6 288
flight-mgmt 5 16 144 1000 144000
sunseeker 2 4 48 2 96
file-store 3 2 32 2 64
packet-store 3

Wmmmmw
values in ports, no impact on timing

» Graphs is generated once from worst-case scenario on hyperperiod,
number of states depend on monitored data

Integration to Ocarina, take 1

> Monitoring is transparent to user

» One additional configuration to Ocarina code generation to
o Activate logging interceptors in communication API
 Generate type for state from model elements

 Evaluate number of state and allocate memory for storing the graph
associated to the worst-case scenario

> Could be embedded in running application
» Model checking is reduced to advanced non intrusive logging

» Reduced penalty at runtime: storing events done as part of
communication API, only read/write to hash tables

Interaction with user — step 1

> Default mode of operation is to use OS primitives for tasking
» Running the system in operational scenario, for functional testing
» Not adequate for model checking

> Need to give control to user to model-level debugger
» Start/stop/step in model elements: tasks queues
» |nject events, remove events, e.g. fault injection, introspection
» Control of the clock to “pause” the model

> Introducing “user-mode” OS-like primitives
» AADL runtime uses regular OS system calls
» Emulate tasking and time management

About user-mode OS primitives

> Leveraging Linux ucontext.h AP
» Definition of “context of execution”, aka thread control block
» Used to emulate context switching, and scheduling policies
» Time managed either using host clock, or emulated using “ticks”

> Defined a new UMthreads target configuration in runtime
» Replace all calls to RTOS to user-mode OS

» Emulate Ravenscar MoC: FIFO_Within_Priorities scheme, ICPP
and absolute delay

» Available as a regular target by user when building its
concurrency view, yet restricted to Linux host

Interaction with user — step 2

> Need a way to interact with simulated models
» Represented as an instrumented binary application

> Defined a Python API to interact with model@runtime

» Uses SWIG to generate set/get methods to interact with models
e |nject events, monitor queues, advance time, etc.

» A few helper functions to start/stop model, configure logging, etc.

> Provide direct access to internals using the same API

» Thin layer from SWIG, reduce uncertainty: you interact with the
real code, not a simulator using a different code base

Example: a script to test the model

class TASTEModel(object): # Handler to TASTE model
def _init_ (self):
Configuration (not shown)

def run(self):
taste_model.init ()

Creating and starting thread running example
My_model = TASTEModel()

Instanciating request factory
reqfac = RequestFactory()

Calling a po_hi_gqueue function to set an in port value

po_hi_gqueue. po_hi_gqueue_store_in
(po_hi_gqueue.pc_consumer_Kk, # id of task
po_hi_gqueue.consumer_local_data_sink, # port
reqfac.consumer_global_data_sink_request_init(40)) # value to be sent

> Integration of model checking facilities to TASTE in progress
» Beyond regular model checking using formal methods
> Allow for model-checking@runtime

1. Fine-tuned monitoring facilities
e At runtime for assertion checking
 Or used for model checking on specific scenarios or full exploration
e Log could be dumped to user for off-line processing

2. User-mode tasking API introduced
e Use RTOS for running time-based scnearios
o User-mode tasking for exploration, with time acceleration (no delay)

3. Python API to control model execution
e Inject events, monitor queues, etc.

> First step focused on enhancing infrastructure for supporting
model-checking in multiple dimensions

» Logging, in-depth testing and model-checking (state exploration)
> Future directions include

1. Specification of properties and observers

« Follow TASTE approach: property is a functional block (e.g. SDL)
weaved to regular model through inspection point (observer)

2. Integration with testing GUI (TM/TC processing) to provide a
uniform access to model internals at runtimerious dimensions
3. Scenario for testing, inline with project requirements
e Observer for wanted/unwanted situation

* Indication of relevant features to monitor (internal state, ports) to
reduced memory overhead

Institut Supérieur de I’Aéronautique et de I'Espace

	Introduction of model checking facilities in TASTE�ESA Final Days�
	Agenda
	TASTE COO3 objectives
	TASTE process in a nutshell
	TASTE process in a nutshell
	Research on AADL @ ISAE
	Ocarina: an AADL code generator�http://www.openaadl.org
	Ocarina runtimes: PolyORB-HI/Ada
	Ocarina runtimes: PolyORB-HI/C
	Generic approach for model checking
	Point of interest for MC
	Example
	Formal definition of a state
	Implementation path
	Implementation of the MC engine
	Managing time
	Benchmarks
	Integration to Ocarina, take 1
	Interaction with user – step 1
	About user-mode OS primitives
	Interaction with user – step 2
	Example: a script to test the model�
	Summary
	Future work
	That’s all folks

