y POLITECNICO DI MILANO

Integration of High Level Synthesis Flow in Taste

Marco Lattuada, Fabrizio Ferrandi Politecnico di Milano

TEC-ED & TEC-SW Final Presentation Days 08 December 2015

Outline

- Introduction
- High Level Synthesis in TASTE
 - Bambu
 - Generated Architecture
- SDL to HDL
- Conclusions

Introduction

- + TASTE provides a framework for the development of safety critical applications
- + FPGAs can be a solution for Space systems because of reconfigurability, computational power and power efficiency
- = TASTE included support to integration of HW accelerator but

DEVELOPER HAS TO DESIGN IMPLEMENTATIONS OF HARDWARE ACCELERATORS

→ High Level Synthesis generates automatically hardware accelerators starting from high level representation

SOLUTION:

INTEGRATION OF HIGH LEVEL SYNTHESIS IN TASTE

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days

HW/SW Interaction

- Processor connected to FPGA through PCI
- TASTE automatically generates drivers
- Software tasks interface drivers
- Drivers automatically perform copying of input data, polling and copying of output data

- Design flow for the automatic generation of ASIC or FPGA implementation
- Complex design flow, not a simple translation
 - $\rightarrow\,$ similar to a compilation flow targeting HDL
- Input: High Level Description C, C++ or SystemC
- Output: RTL hardware implementations VHDL or Verilog
- Must be coupled with Logic Synthesis
 - transforms RTL implementation in logic gates implementation
 - performed by FPGA vendor tools

Bambu

- High Level Synthesis tool developed at Politecnico di Milano
- Publicly available under GPL license

http://panda.dei.polimi.it

- Input is C code:
 - Multiple source files can be used
 - Most of the C constructs are supported (e.g., pointer arithmetic, function pointer, dynamic memory allocation)
 - Existing Hardware Modules can be integrated
- Output is VERILOG/VHDL
- Supports devices from:
 - Altera
 - Lattice
 - Xilinx
- Better/comparable results with respect to commercial tool

Integration of Bambu in TASTE

POLITECNICO DI MILANO

Generated Architecture

- Board is a GR-CPCI-XC4V (Virtex4 XC4VLX FPGA)
- Modules are taken from the GRLIB IP Library
- Two buses: AHB + APB
 - Maintained for backward compatibility

TASTE:

- Safety critical applications coding rules
- Size of input and output parameters must be fixed

TASTE FPGA Architecture

- Overall size of input and output parameters bounded to 256B because of the driver
- Overall size of input and output parameters bounded to 4KB because of Amba APB

Bambu:

No further constraint

Automatic Generation of Hardware Accelerators starting from SDL descriptions performed in two steps:

- 1 SDL \rightarrow C
 - performed with OpenGeode
 - A new backend for C has been addedd
 - Supports all the constructs supported by OpenGeode frontend

$2 \text{ C} \rightarrow \text{VHDL}$

performed with High Level Synthesis

The steps that a designer has to perform to exploit HLS in TASTE starting from C legacy code:

- 1 Application Decomposition
 - → Isolate hardware kernels in separated functions
- 2 Algorithm Customization
 - → Remove all non necessary parameters
- 3 Kernels Cleaning
 - → Remove all the unused code from the kernels
- 4 Exchanged Data Identification
 - → Put all the input/output data in parameters, remove use of global variables

5 Data View Building

 \rightarrow Enrich Data View with the data types used in kernel interfaces

6 Interface View Building

→ Building of interface view with the graphical editor

7 Interface Generation

→ Automatic Generation of interfaces

8 C Code Implementation

 \rightarrow Interfaces of SW tasks must be filled with actual implementation

9 Deployment View Building

→ Building of department view with the graphical editor

10 System Building

 $\rightarrow\,$ Building of the final system with TASTE

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days

- A first prototype of design flow integrating HLS in TASTE has been developed
- The design flow still requires activities by the developer
- Possible future works:
 - Integration of HW/SW partitioning methodologies
 - Tuning of HW/SW interface
 - Development of WCET technique in High Level Synthesis

The presented work has been accepted for publication in the 37th IEEE Aerospace Conference

http://panda.dei.polimi