
Integration of High Level Synthesis Flow in

Taste

Marco Lattuada, Fabrizio Ferrandi
Politecnico di Milano

TEC-ED & TEC-SW Final Presentation Days

08 December 2015



2
Outline

◾ Introduction

◾ High Level Synthesis in TASTE

◾ Bambu

◾ Generated Architecture

◾ SDL to HDL

◾ Conclusions

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



3
Introduction

+ TASTE provides a framework for the development of safety

critical applications

+ FPGAs can be a solution for Space systems because of

reconfigurability, computational power and power efficiency

= TASTE included support to integration of HW accelerator

but

DEVELOPER HAS TO DESIGN

IMPLEMENTATIONS OF HARDWARE ACCELERATORS

→ High Level Synthesis generates automatically hardware

accelerators starting from high level representation

SOLUTION:

INTEGRATION OF HIGH LEVEL SYNTHESIS IN TASTE

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



4
HW/SW Interaction

Software

Driver

Calling

Function

HW

Accelerator
call()

write_in()

start()

poll()

read_out()

◾ Processor connected

to FPGA through PCI

◾ TASTE automatically

generates drivers

◾ Software tasks

interface drivers

◾ Drivers automatically

perform copying of

input data, polling and

copying of output data

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



5
High Level Synthesis

◾ Design flow for the automatic generation of ASIC or FPGA

implementation

◾ Complex design flow, not a simple translation
→ similar to a compilation flow targeting HDL

◾ Input: High Level Description - C, C++ or SystemC

◾ Output: RTL hardware implementations - VHDL or Verilog

◾ Must be coupled with Logic Synthesis
◾ transforms RTL implementation in logic gates implementation

◾ performed by FPGA vendor tools

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



6
Bambu

◾ High Level Synthesis tool developed at Politecnico di Milano

◾ Publicly available under GPL license

http://panda.dei.polimi.it

◾ Input is C code:
- Multiple source files can be used

- Most of the C constructs are supported (e.g., pointer arithmetic,
function pointer, dynamic memory allocation)

- Existing Hardware Modules can be integrated

◾ Output is VERILOG/VHDL
◾ Supports devices from:

- Altera

- Lattice

- Xilinx

◾ Better/comparable results with respect to commercial tool

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



7
Integration of Bambu in TASTE

BAMBU

.aadl

Interface

View

.aadl

Data

View

AADL

Parser

ASN.1

Parser

.asn

.asn

Data

View

Optimizations
Architecture

Generation

.vhd .vhd

TASTE

architecture

Custom

Accelerators

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



8
Generated Architecture

FPGA

PCI

Target

AHB Bus

APB

Bridge

APB Bus

HW Accel.

1

HW Accel.

2
P

C
I
B

u
s

CPU

◾ Board is a GR-CPCI-XC4V (Virtex4 XC4VLX FPGA)

◾ Modules are taken from the GRLIB IP Library
◾ Two buses: AHB + APB

◾ Maintained for backward compatibility

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



9
Generated Architecture - Accelerator

C Function

Implementation

Local

Memory

IN Registers

OUT Registers

Control Register

Address

Translator

Data

Restructuring

APB Slave Interface

Internal Address Bus

Internal Data Bus

Private Data Bus

Private Address Bus

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



10
Constraints

◾ TASTE:
◾ Safety critical applications coding rules

◾ Size of input and output parameters must be fixed

◾ TASTE FPGA Architecture
◾ Overall size of input and output parameters bounded to 256B

because of the driver

◾ Overall size of input and output parameters bounded to 4KB
because of Amba APB

◾ Bambu:
◾ No further constraint

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



11
SDL to HDL

Automatic Generation of Hardware Accelerators starting from

SDL descriptions performed in two steps:

1 SDL → C
◾ performed with OpenGeode

◾ A new backend for C has been addedd
◾ Supports all the constructs supported by OpenGeode frontend

2 C → VHDL
◾ performed with High Level Synthesis

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



12
Exploitation of High Level Synthesis

The steps that a designer has to perform to exploit HLS in

TASTE starting from C legacy code:

1 Application Decomposition
→ Isolate hardware kernels in separated functions

2 Algorithm Customization
→ Remove all non necessary parameters

3 Kernels Cleaning
→ Remove all the unused code from the kernels

4 Exchanged Data Identification
→ Put all the input/output data in parameters, remove use of global

variables

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



13
Exploitation of High Level Synthesis

5 Data View Building
→ Enrich Data View with the data types used in kernel interfaces

6 Interface View Building
→ Building of interface view with the graphical editor

7 Interface Generation
→ Automatic Generation of interfaces

8 C Code Implementation
→ Interfaces of SW tasks must be filled with actual implementation

9 Deployment View Building
→ Building of department view with the graphical editor

10 System Building
→ Building of the final system with TASTE

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days



14
Conclusions and Future Works

◾ A first prototype of design flow integrating HLS in TASTE has

been developed

◾ The design flow still requires activities by the developer

◾ Possible future works:
◾ Integration of HW/SW partitioning methodologies

◾ Tuning of HW/SW interface
◾ Development of WCET technique in High Level Synthesis

The presented work has been accepted for publication in the

37th IEEE Aerospace Conference

http://panda.dei.polimi

Marco Lattuada, TEC-ED & TEC-SW Final Presentation Days


