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Introduction

+ TASTE provides a framework for the development of safety

critical applications

+ FPGAs can be a solution for Space systems because of

reconfigurability, computational power and power efficiency

= TASTE included support to integration of HW accelerator

but

DEVELOPER HAS TO DESIGN

IMPLEMENTATIONS OF HARDWARE ACCELERATORS

→ High Level Synthesis generates automatically hardware

accelerators starting from high level representation

SOLUTION:

INTEGRATION OF HIGH LEVEL SYNTHESIS IN TASTE
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HW/SW Interaction

Software

Driver

Calling

Function

HW

Accelerator
call()

write_in()

start()

poll()

read_out()

◾ Processor connected

to FPGA through PCI

◾ TASTE automatically

generates drivers

◾ Software tasks

interface drivers

◾ Drivers automatically

perform copying of

input data, polling and

copying of output data
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High Level Synthesis

◾ Design flow for the automatic generation of ASIC or FPGA

implementation

◾ Complex design flow, not a simple translation
→ similar to a compilation flow targeting HDL

◾ Input: High Level Description - C, C++ or SystemC

◾ Output: RTL hardware implementations - VHDL or Verilog

◾ Must be coupled with Logic Synthesis
◾ transforms RTL implementation in logic gates implementation

◾ performed by FPGA vendor tools
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Bambu

◾ High Level Synthesis tool developed at Politecnico di Milano

◾ Publicly available under GPL license

http://panda.dei.polimi.it

◾ Input is C code:
- Multiple source files can be used

- Most of the C constructs are supported (e.g., pointer arithmetic,
function pointer, dynamic memory allocation)

- Existing Hardware Modules can be integrated

◾ Output is VERILOG/VHDL
◾ Supports devices from:

- Altera

- Lattice

- Xilinx

◾ Better/comparable results with respect to commercial tool
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Integration of Bambu in TASTE
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Generated Architecture
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◾ Board is a GR-CPCI-XC4V (Virtex4 XC4VLX FPGA)

◾ Modules are taken from the GRLIB IP Library
◾ Two buses: AHB + APB

◾ Maintained for backward compatibility
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Generated Architecture - Accelerator
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Constraints

◾ TASTE:
◾ Safety critical applications coding rules

◾ Size of input and output parameters must be fixed

◾ TASTE FPGA Architecture
◾ Overall size of input and output parameters bounded to 256B

because of the driver

◾ Overall size of input and output parameters bounded to 4KB
because of Amba APB

◾ Bambu:
◾ No further constraint
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SDL to HDL

Automatic Generation of Hardware Accelerators starting from

SDL descriptions performed in two steps:

1 SDL → C
◾ performed with OpenGeode

◾ A new backend for C has been addedd
◾ Supports all the constructs supported by OpenGeode frontend

2 C → VHDL
◾ performed with High Level Synthesis
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Exploitation of High Level Synthesis

The steps that a designer has to perform to exploit HLS in

TASTE starting from C legacy code:

1 Application Decomposition
→ Isolate hardware kernels in separated functions

2 Algorithm Customization
→ Remove all non necessary parameters

3 Kernels Cleaning
→ Remove all the unused code from the kernels

4 Exchanged Data Identification
→ Put all the input/output data in parameters, remove use of global

variables
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Exploitation of High Level Synthesis

5 Data View Building
→ Enrich Data View with the data types used in kernel interfaces

6 Interface View Building
→ Building of interface view with the graphical editor

7 Interface Generation
→ Automatic Generation of interfaces

8 C Code Implementation
→ Interfaces of SW tasks must be filled with actual implementation

9 Deployment View Building
→ Building of department view with the graphical editor

10 System Building
→ Building of the final system with TASTE
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Conclusions and Future Works

◾ A first prototype of design flow integrating HLS in TASTE has

been developed

◾ The design flow still requires activities by the developer

◾ Possible future works:
◾ Integration of HW/SW partitioning methodologies

◾ Tuning of HW/SW interface
◾ Development of WCET technique in High Level Synthesis

The presented work has been accepted for publication in the

37th IEEE Aerospace Conference

http://panda.dei.polimi
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