

L3Obis: Leon3-based Onboard Instrument Software A case study using TASTE

Daniel Tonoiu

L3Obis

- Purpuse → Alpha version of a flight application software for an On-Board Instrument Control Unit
- Properties:
- follows ESA and ECSS standards
- runs on a Leon 2/3 simulated processor
- Functionality:
- produce and exchange telemetry packets
- monitor the Instrument and the CDPU status
- acquire scientific data from an Instrument simulator
- perform lossless data compression

L3Obis

We use ESA TASTE framework

- We use the following technologies:
- modeling \rightarrow ASN1, ACN, AADL, SDL
- code generation & deployment $\rightarrow C$
- debugging & testing → MSC
- execution platform → RTEMS, LINUX

L3Obis – Interface View

L3Obis – Deployment View

L3Obis

- TC and TM packets → communicate between the components of the system
- ASN1 \rightarrow DataView.asn \rightarrow data model
- ACN \rightarrow DataView.acn \rightarrow data format

Spare bits \rightarrow N no. of words

TC packet structure:

TM packet structure:

```
T-telecommand ::= SEQUENCE
    packet-header
                       TC-packetHeader,
    data-field-header T-tc-dataFieldHeader.
    application-data
                       T-tc-applicationData,
                        T-uint16
    crc
T-tc-applicationData ::= CHOICE
 tc-3-1-define-hk-report
                            TC-DEFINE-HK-REPORT,
 tc-3-5-enable-hk-report
                                TC-ENABLE-HK-REPORT,
 tc-3-6-disable-hk-report
                                TC-DISABLE-HK-REPORT.
  tc-6-2-load-memory
                             TC-LOAD-MEMORY
```

```
T-telemetry ::= SEQUENCE
```

```
packet-header TM-packetHeader,
data-field-header T-tm-dataFieldHeader,
application-data T-tm-applicationData
```

```
T-tm-applicationData ::= CHOICE {

tm-1-1-acc-sucess TM-ACC-SUCCESS,

tm-1-2-acc-failure TM-ACC-FAILURE,

tm-3-25-hk TM-DBS-HK,

tm-5-1-event-pr-nominal TM-EVENT-PR-NOMINAL-REPORT,

tm-5-2-event-low-severity TM-EVENT-ANOMALY-REPORT-LOW-SEVERITY,

tm-5-3-event-medium-severity TM-EVENT-ANOMALY-REPORT-MEDIUM-SEVERITY,

tm-5-4-event-high-severity TM-EVENT-ANOMALY-REPORT-HIGH-SEVERITY
```

TC and TM packets are set according to ECSS-E-70-41

L3Obis: TC / TM services

TC:

TM:

Load Memory using Absolute Addresses service

- \rightarrow load data to an area of memory block
- Define new housekeeping reports service
 - \rightarrow set the collection interval
- Enable/Disable Housekeeping Parameter Report Generation service
- Housekeeping Parameter Report service

→ report HK parameters

- Telecommand Acceptance Report Success/Failure
 - \rightarrow verify TC integrity
- Normal Progress/Error Report service
 - \rightarrow link integrity, data storing

• Start data acquisition:

_	gui – ¤ ×
MSC	
	tm 💿 🗵
taste	Field Value
	□ packet_header □ packet_id □ packet_id □ packet_id
Available test scripts:	□ packet_sequence □ sequence_grou continuation_sequenc
	packet_length 0
	■ time
	Plot Meter
	startAcq acqT colint enHK jSamples
	startAcq 🖉 🗷
	Field Value
	startAcq False
Run Load Edit	Send TC Load TC Save TC
ENLIMERATED	

- Call buildTC() function to construct TC
- Set process_id, sequence_groupingFlag, sequence_count

- Set the specific TC fields
- Set the Load Memory using A.A. service parameters:
 - \rightarrow startAcquisition:

f absolute address

value

if(parameterNo == 1){ // set the address for 'startAcquisition' parameter // set the startAcquisition parameter absolute address oneTC.application_data.u.tc_6_2_load_memory.start_address.arr[0] = 0x40; oneTC.application_data.u.tc_6_2_load_memory.start_address.arr[1] = 0x12; oneTC.application_data.u.tc_6_2_load_memory.start_address.arr[2] = 0xee; oneTC.application_data.u.tc_6_2_load_memory.start_address.arr[3] = 0xd4; // set the startAcquisition parameter value setBlockData(&oneTC.application_data.u.tc_6_2_load_memory.block_data, parameterValue); }

- Send TC to a blackbox device
- → compute Packet Data Field
- → add it to Packet Length
- \rightarrow compute the checksum
- → add it to the Packet Error Control

L3Obis: Verify TC integrity

Sends TC to CDPU
 → tc_dispatcher
 blackbox_device
 → calculate checksum
 → sends TC to cdpu_tc_hk

L3Obis: Verify TC integrity

- Checksum == $0 \rightarrow$ no transmission errors => keep TC
- Use TC Acceptance Report Success (1, 1) service
- \rightarrow send TM packet to cdmu
- cdpu_tc_hk_startup() → sets TM general fields
- Checksum != 0
- → use Telecommand Acceptance Report Failure (1,2)
- → send TM packet to cdmu

```
\rightarrow disregard TC
```

```
// receive TC from CDMU via tc_dispatcher function
void cdpu_tc(const asn1SccT_telecommand *IN_tc, const asn1SccT_uint8b *IN_crc){
   //Acceptance of the telecommand: verification that the telecommand has not been corrupted
   // find which acknowledgments shall be sent to the ground
   bool ackTCheader = (*IN_tc).data_field_header.ack_acceptance;
   if(ackTCheader == true){
      // send Telecommand Acceptance Report -- Success (1, 1) or Failure (1, 2)
      //send Telecommand Acceptance Report -- Failure (1, 2)
      if((*IN_crc) != 0){ // transmision error
        // disregard the received TC
        if(disregardTC == 0)
            disregardTC = 1;
```

L3Obis: Verify TC integrity

Find the TC service type

→ check the startAcquisition parameter address & value

Build a low level TC
 → Set fields

 ∫ parameterNo
 parameterValue

// check if the TC address is that of the startAcquisition parameter if(addressInt32 == startAcquisition){ if (valueInt32 == 1) printf("cdpu_tc_hk: cdpu sends start data acquisition command....\n"); if (valueInt32 == 0) printf("cdpu_tc_hk: cdpu sends stop data acquisition command....\n"); // set the low level TC for the startAcquisition parameter tc_ll_cdpu.parameterNo = 1; tc_ll_cdpu.parameterValue = valueInt32; // send low level TC to instrument cdpu tc hk RI tc lowL link(&tc ll cdpu);

Send low level TC to pmcu

- Start data acquisition:
- → pmcu commands the shutter to open and the roe to start
- Stop data acquisition:
- → pmcu commands the roe to stop and shutter to close

- SDL shutter function:
- → open, waitOpen, close, waitClose states
- \rightarrow *transientTime* \rightarrow set the transition period
- → report shutterStatus to pmcu

- Upon TC goes from Off to On state
- acqDuration → set timer for data acquisition
- call stopAcq PI

- TASTE GUI: acqT parameter
- → set the time interval for the data acquisition
- Sent TC to cdpu:
- \rightarrow buildTC()
- \rightarrow type (6,2) TC service
- cdpu:
- → check TC integrity
- \rightarrow route to *instrument* app.
- roe:
- \rightarrow set *timer01*

startAcq	acqT	colint	enHK	jSamples	
acqT					0 X
Field			Value	e	
acqT			10		
Send	TC	Lo	ad TC	Sav	/e TC

- Call *ccd* function \rightarrow *sendCCDBlock*
- ccd:
- \rightarrow reads from input file define sequenceNoOfChars 1024
 - Call roe function
 → receiveCCDBlock
 - SciData structure:
 - → DataView.asn

- CCD sciData
- \rightarrow roe On state
- send sciData to compression:
- \rightarrow *cdpu_ldc* function

- cdpu_ldc:
- → call nextData interface
- roe: send more data
- → call sendCCDBlock
- stop conditions:
- \rightarrow put startAcq to 0
- \rightarrow *timer01* expires

- cdpu_ldc → sciData
- → sendSci PI
- compressSeq → sciData → compressSeq PI:
- → protected interface: new data only after previous block was processed

- ccd last incomplete sequence:
- → forward to sendLastSq PI
- \rightarrow store to mm

L3Obis: Rice algorithm

• lossless coding method \rightarrow preserves the original data accuracy

[from CCSDS 121.0-B-2]

- Input block no of samples \rightarrow J = 8, 16, 32, 64
- AEC → smallest average no of bits for input sample

L3Obis: Rice algorithm

- Preprocessor output data
- → AEC module → variable-length codewords

Code Option Selection Selected AEC: Option Code Zero-Block Option ID Option → sequence 2nd Extension of coding Option FS $\delta = \delta_1, \delta_2, \dots, \delta_J$ options $x = x_1, x_2, \dots, x_J$ Option Preprocessor k = 1Option k = 2Option No Compression

[from CCSDS 121.0-B-2]

- Select the algorithm option that use the shortest no of bits
- Add the algorithm option ID
- \rightarrow helps decoder to identify the selected option

- Encapsulate encoded data:
- \rightarrow CDS format
- AEC output
- → sequence of CDS blocks
- first CDS:
- \rightarrow add reference sample

a) Format with reference sample:

- reference sample: an uncompressed data sample
- r = reference sample interval:
- → add periodically a reference sample in the CDS structure

compressSeq function

\rightarrow initialize the compression parameters

```
void compressseq PI compressSeq(const asnlSccSciData *IN scidata,
                                const asnlSccT_uint16 *IN_blockNoOfSamples,
                                asnlSccT UInt32 *IN sentChars)
 int i, j, k, sNo, diSum;
 unsigned char ksplitI;
 printf("inside compressSequenceFunction....\n");
 // setup encoding
 countCDSchars = 0;
 outputIndex = 0;
 sCount = 0;
 blockNoOfSamples = *IN blockNoOfSamples;
 printf("compressSeq: blockNoOfSamples: %d\n", blockNoOfSamples);
 rBlockInterval = rSampleInterval/blockNoOfSamples;
  // compute x min, x max - to be used in Preprocessor, Predition error mapper
 computeXminmax();
 //printf("x_min: %lu, x_max: %lu \n", x_min, x_max);
 // set the no of blocks to be compressed
 inputBlockNo = (*IN_scidata).sizeSequence / blockNoOfSamples;
  // process each block
 for(i=0; i< inputBlockNo; i++){</pre>
        // if block with reference sample...
       if (i % rBlockInterval == 0) { // !!! & 0 stops the preprocessor for testing purposes
            // set reference sample
            referenceSample 8b = (*IN scidata).fileBlock.arr[(i*blockNoOfSamples)];
```

- There are two cases:
- \rightarrow the first sample of the block is a reference sample
- \rightarrow the block has no reference sample
- Preprocess the data → preprocessor_8b function
- Calculate the no. of bits for each compression option → selectBestCodingOption()
- Build and send CDS packet

void compressseq_startup()

```
/* Write your initialization code he
printf("compressed startup...\n");
blockNoOfSamples = 8;
rSampleInterval = 1024;
SampleResolution = 8;
positiveSignalValue = 1;
countCDSchars = 0;
addElementsOfBlock=0;
indSci = 0;
```

- Set blockNoOfSamples → (*IN_blockNoOfSamples)
- compute rBlockInterval
- Process each input block

- Change the no. of samples of the input data block
- \rightarrow select from GUI the no of samples
- \rightarrow GUI \rightarrow cdmu \rightarrow buildTC() \rightarrow TC (6,2)

→ cdpu_tc_hk → cdpu_ldc → tc_op PI →TC sets *blockSamplesNo* variable → call compressSeq()

writeln('cdpu_ldc: compress the data sequence...wait..')

compressSeq(rawData, blockSamplesNo, sentChars)

				4	
startAcq	acqT	colint	enHK	jSamples	
jSamples					0 🗴
Field			Value	,	
i jSampl	es		j8		
			j16		
			j32		
			j64		
Send	ТС	Lo	ad TC	Sav	ve TC

• Sends periodic HK:

roeStatus shutterStatus compressionRate compressionStatus

set T for HK reports → use collnt

_						
	startAcq	acqT	colint	enHK	jSamples	
¢	olint					0 🗙
	Field			Val	ue	
	- colint			1		
	Send	I TC		Load TC		Save TC

• collnt PI \rightarrow buildTC \rightarrow TC of type (3,1)

• cdpu_tc_hk function:

- set *hk_collection_interval* from TC → send HK periodically

//Define new housekeeping reports (3,1) service if((*IN_tc).application_data.kind == tc_31_define_hk_report_PRESENT && !disregardTC){ //printf("sequence count: %d \n", (*IN_tc).packet_header.packet_sequence_control.sequence_count); //set HK collection interval hk_collection_interval = (*IN_tc).application_data.u.tc_31_define_hk_report.hk_collection_interval; // reset the clock for hk reports countToColectionInterval = 0; printf("the collection_interval: %lld \n", hk_collection_interval);

roe State: On → Off => roeStatus → FALSE

 $Off \rightarrow On => roeStatus \rightarrow TRUE$

• $pmcu \rightarrow low level HK$: { roeStatus, shutterStatus } $\rightarrow cdpu_tc_hk$

```
// pmcu_hk: collects low level HK from Shutter and ROE and send it to CDPU
pmcu_hk(){
    // setting the instrument HK data structure
    instrument_hk.roeStatus = roeStatus;
    instrument_hk.shutterStatus = shutterStatus;
    // sending hk params to cdpu
    pmcu_RI_hk_lowL_link(&instrument_hk);
}
```

• $cdpu_ldc \rightarrow HK$ data:

compression rate & status

 \rightarrow hk_ldc_link PI \rightarrow cdpu_tc_hk

- *compRate* function:
- \rightarrow compression rate = IN/OUT

- general TM fields:
- \rightarrow cdpu_tc_hk_startup()
- specific TM fields:
- \rightarrow send325HK()
- $tm_link \rightarrow$ send TM packets

```
// select the Housekeeping Parameter Report (3,25) service and sets the HK parameters values
void send325HK(){
  //use the collection interval value to set the period of hk reports
  ++countToColectionInterval;
  if(countToColectionInterval == hk collection interval){
    // increment Source Sequence Count for each TC sent
    //used to identify a particular telecommand packet so that it can be traced
    oneTM.packet header.packet sequence control.sequence count++;
    // select the Housekeeping Parameter Report (3,25) service
    oneTM.application data.kind = tm 3 25 hk PRESENT;
    // set the HK parameters values
   oneTM.application data.u.tm 3 25 hk.hk report sid = 0;
    oneTM.application data.u.tm 3 25 hk.roe status = instrument hk.roeStatus;
    oneTM.application_data.u.tm 3 25 hk.shutter_status = instrument_hk.shutterStatus;
    oneTM.application data.u.tm 3 25 hk.compression rate = ldc hk.compression rate;
    oneTM.application data.u.tm 3 25 hk.compression status = ldc hk.compression status;
```

 \rightarrow GUI

monitor HK parameters:

\rightarrow console

the	acce	epted TC	sequence cou	int: l					
cdmu	hk	report:	roe_status:	0 ,shutter_status:	0	,compression_rate:	0	,compression_status:	0
cdmu	hk	report:	roe_status:	0 ,shutter_status:	0	,compression_rate:	0	,compression_status:	Θ
cdmu	hk	report:	roe_status:	0 ,shutter_status:	Ο	,compression_rate:	0	,compression_status:	0
cdmu	hk	report:	roe_status:	1 ,shutter_status:	1	,compression_rate:	6	,compression_status:	1
cdmu	hk	report:	roe_status:	<pre>1 ,shutter_status:</pre>	1	,compression_rate:	5	,compression_status:	1

\rightarrow MSC tool : trace in real-time the message exchanges

	g	ui	TASTE_	System	
со	mpression-ra	te 0 }, packet-header { packet-id { apid 2 }, packet-length 0, packet-se	equence-	ontrol	{ seque
со	mpression-ra	te 0 }, packet-header { packet-id { apid 2 }, packet-length 0, packet-se	equence-	ontrol	{ seque
со	mpression-ra	te 0 }, packet-header { packet-id { apid 2 }, packet-length 0, packet-se	equence-	ontrol	{ seque
		acqT(1)			
}. t	c-packet-id	{ apid { process-id 2 } } }, packet-header { packet-id { apid 2 }, packet	et-length	0, pack	et-sequ
со	mpression-ra	te 0 }, packet-header { packet-id { apid 2 }, packet-length 0, packet-se	equence-	ontrol	{ seque
со	mpression-ra	te 0 }, packet-header { packet-id { apid 2 }, packet-length 0, packet-se	equence-	ontrol	{ seque
					25

L3Obis: Enable/Disable HK Parameter Report Generation

			nunnun s		
startAcq	acqT	colint	enHK	jSamples	
enHK					ð 🗙
Field			True		
enHK			False	e	
Send	тс	Loa	ad TC	Sa	ve TC
	startAcq enHK Field enHK	startAcq acqT enHK Field enHK Send TC	startAcq acqT colint enHK Field ••••••••••••••••••••••••••••••••••••	startAcq acqT colInt enHK enHK Field True 	startAcq acqT colInt enHK jSamples enHK Field True

- $cdmu \rightarrow send TC of type (3,5)$
- cdpu_tc_hk: set enableHousekeepingReports from TC

//Enable Housekeeping Parameter Report Generation (3,5)
if((*IN_tc).application_data.kind == tc_3_5_enable_hk_report_PRESENT && !disregardTC){
 printf("enabling the Housekeeping Parameter Report Generation ...\n");
 // enable periodic housekeeping reports to cdmu
 if(!enableHousekeepingReports)
 enableHousekeepingReports = 1;
}

check enableHousekeepingReports → send TM packets

// select the Housekeeping Parameter Report (3,25) service and sets the HK parameters values
if(enableHousekeepingReports)
 send325HK();

L3Obis: Future activities

- Change sample resolution:
- \rightarrow 16 & 32 bits for input samples
- Test Leon2/3 performance for different input compression parameters.

- Develop the decompression software
- recover the original uncompressed scientific data
- Fix bugs, improve code