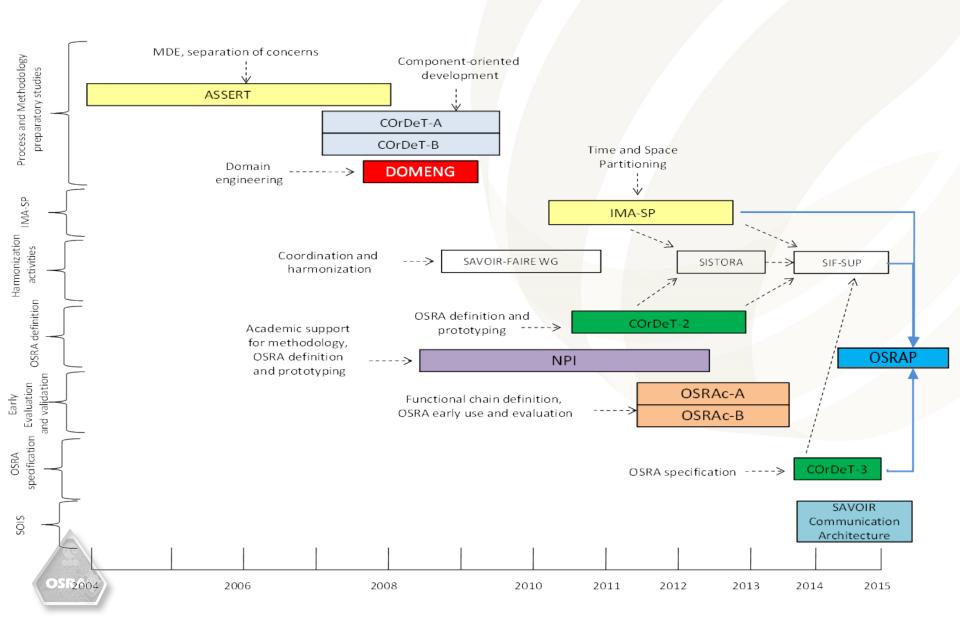
On-board Software Reference Architecture for Payloads

Prime: Space Systems Finland (FIN) Subco: Evolving Systems Consulting (CZ) Duration: Feb 2014 – Nov 2015 Contract No: 4000110034/13/NL/LvH Technical officer: A. Rugina



Overview

- 1. Introduction
- 2. Timeline and project logic
- 3. Payload Domain
- 4. OSRA-P Definition
- 5. OSRA-P Workshop
- 6. Case studies
- 7. Conclusions

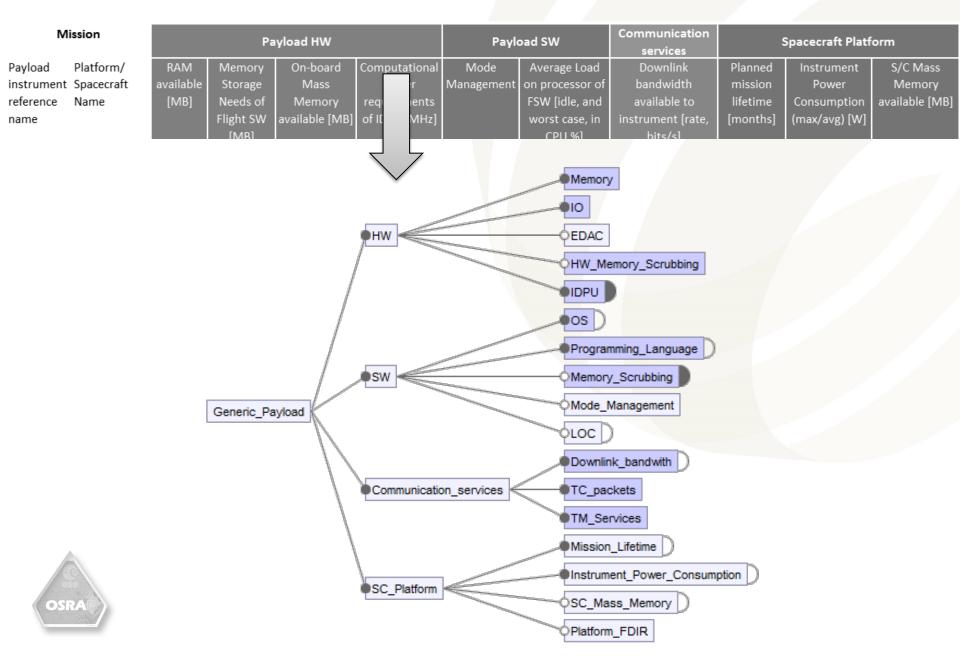
Timeline

Capabilities Matrix

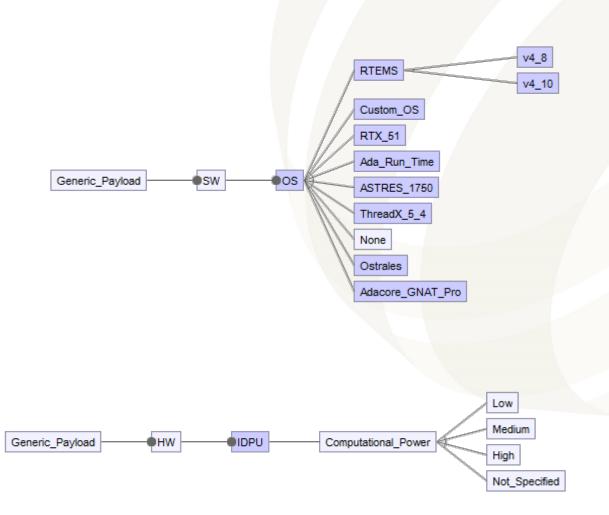
	_			Payload	HW			
Processor module		RAM available [MB]	Memory Storage Needs of Flight SW [MB]	On-board Mass Memory available [MB]	Memory Power		External Payload Interfaces to S/C	EDAC
				Payload	SW			
Payload specific FDIR	RTOS	Mode Management	Duration of col loops, if an	`	L) Memory scrubbing	Programming languages	Average Load on processor of FSW [idle, and worst case, in CPU %]	LOC

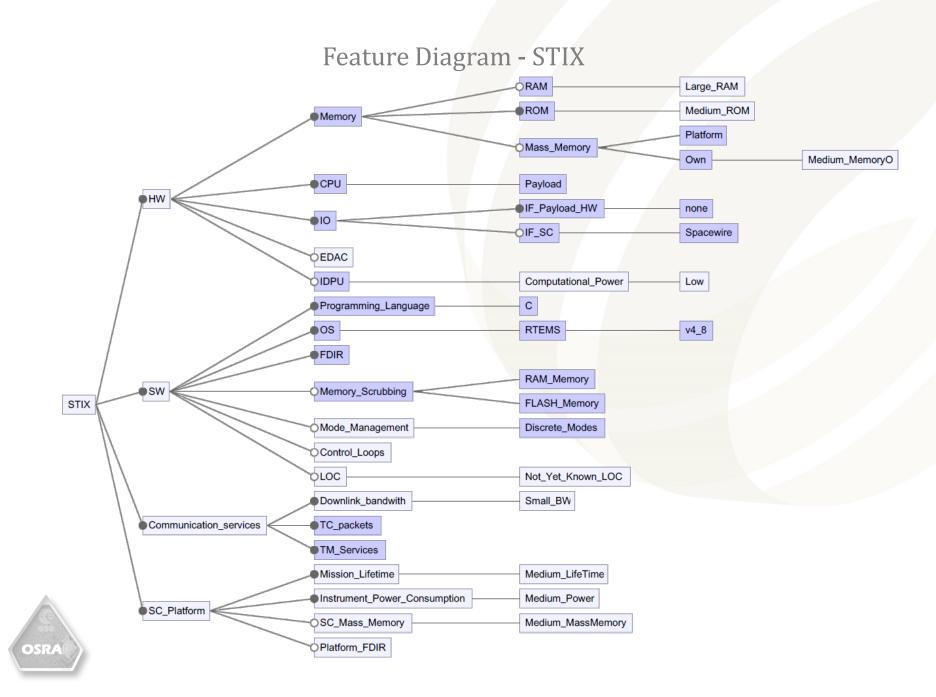
	Communication services						
Downlink bandwidth available to instrument [rate, bits/s]	TM Services2	Number of TM packets	TC Services	Number of TC packets			

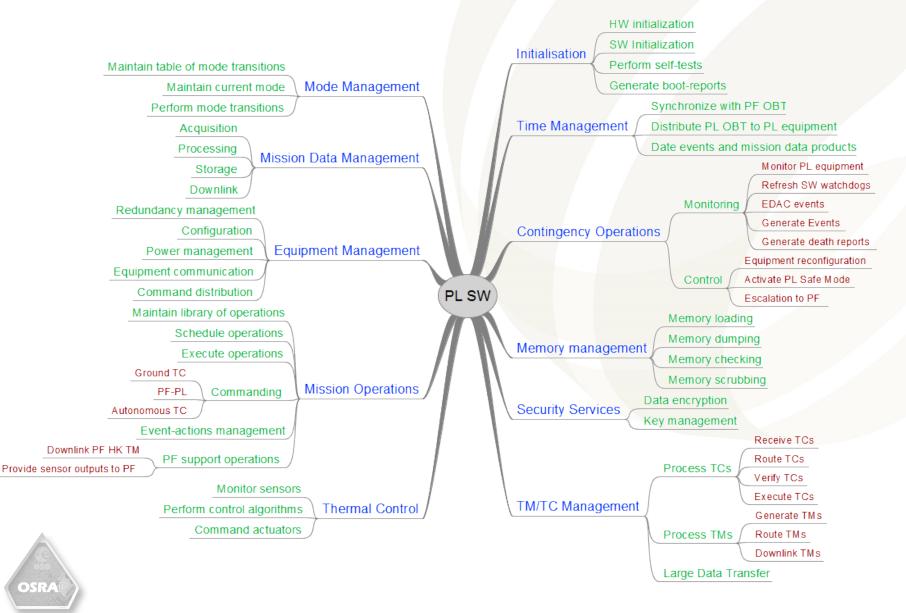
	Spacecraft Platform						
Planned mission lifetime [months]	Instrument Power Consumption (max/avg) [W]	S/C Mass Memory available [MB]	Platform FDIR				

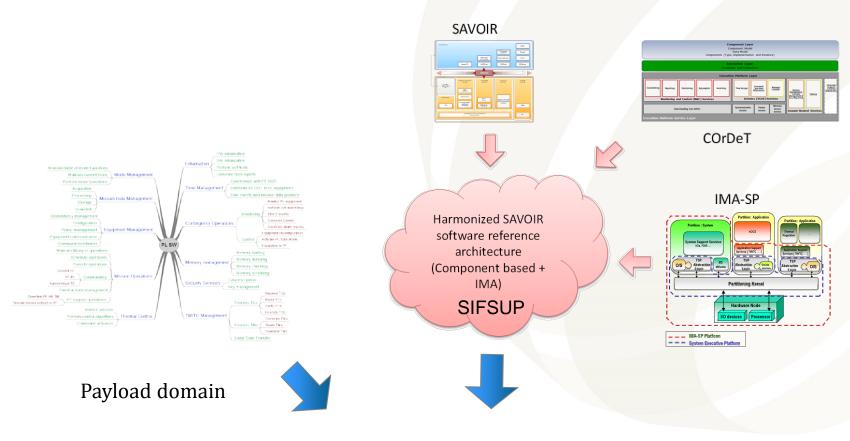


Capabilities Matrix (numerical Results)


M	ission		Pa	iyload HW		Payload SW		Communication services	Spacecraft Platform		
Payload	Platform/	RAM	Memory	On-board	Computational	Mode	Average Load	Downlink	Planned	Instrument	S/C Mass
instrument	Spacecraft	available	Storage	Mass	Power	Management	on processor of	bandwidth	mission	Power	Memory
reference	Name	[MB]	Needs of	Memory	requirements		FSW [idle, and	available to	lifetime	Consumption	available [MB]
name			Flight SW	available [MB]	of IDPU [MHz]		worst case, in	instrument [rate,	[months]	(max/avg) [W]	
			[MB]				CPU %]	bits/s]			
SIXS/MIXS	BepiColombo	4	1	0	25.00	13	86.00%	401,604.00	12	46	
FCI	MTG-I	8		0	20.00	-	0.00%		240	N-A	
IRS	MTG-S	8		0	20.00	-	0.00%		240	N-A	
S4 UVN	MTG-S	50	2	0	64.00	6	0.00%	4,000.00			
SAR	Sentinel 1	8	2	0	80.00	9	57.00%		84	(3650w/?)	176,250.00
EUI	Solar Orbiter	4	2	7000	40.00	5	60.00%	20,500.00	120	30	6,650.00
RPW	Solar Orbiter	64	64	4	25.00	9	60.00%	5,500.00	84	23	3,648.00
EPD	Solar Orbiter	128	1	0	20.00	5	47.00%	3,500.00	84	28	2,393.60
STIX	Solar Orbiter	128	10	8162	20.00	5	75.00%	700.00	84	8.6	230.00
PHI	Solar Orbiter	256	4	64	0.00	9	20.00%	20,500.00	120	16	6,809.60
ACC3	SWARM	0	0.064	0	12.00	7	0.00%	1,310.00	36	8.2	-
AVERAGE		60	9.56	1,384.55	29.64	7.56	36.82%	57,201.75	110.40	22.83	27,997.31
SUMS		658	86.06	15,230.00	326.00	68		457,614.00	1,104.00	159.80	195,981.20


Feature Diagrams


Feature Diagrams



Functional Decomposition

Towards OSRA-P

OSRA-P Architecture

Payload Deployment Options

Monolithic

without TSP, generally on dedicated HW node

Partitioned

with TSP, on non-dedicated HW node

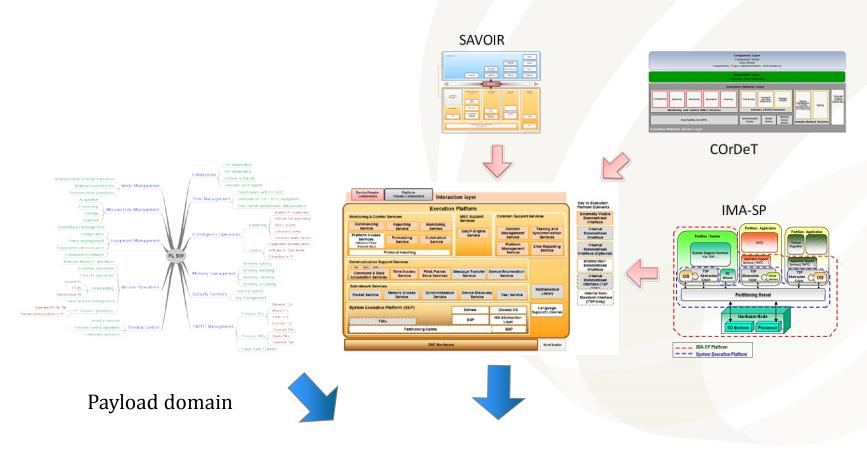
Payload Deployment Options

@ RUNTIME

Monolithic

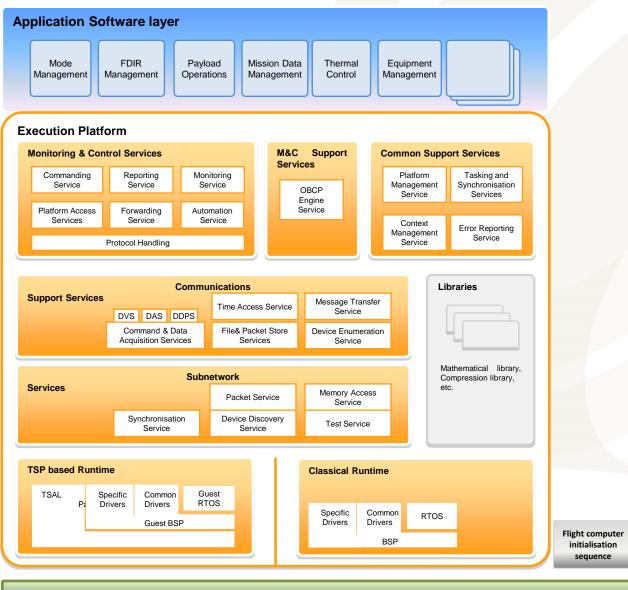
Classical

- RTOS
- Common drivers
- Specific Drivers
- BSP


Partitioned

TSP based

- •Guest RTOS
- •Guest BSP
- •Common drivers
- •Specific drivers
- •TSAL

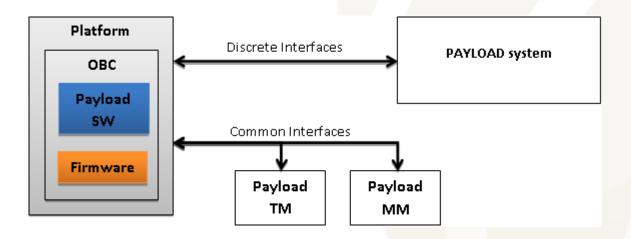

Towards OSRA-P

OSRA-P Architecture

OSRA-P Architecture

OBC Hardware

Payload-Platform interface


Three main types (SAVOIR - ASRA):

- 1. Direct PL interface
- 2. PL interface unit (PLIU)
- 3. PL management unit (PLMU)

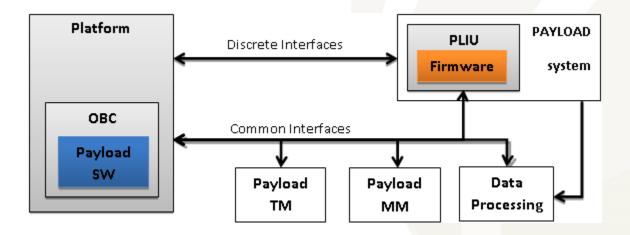
OSRA-P is PL application software: what do these PL-PF interface approaches mean for PL application software?

1. Direct Payload-Platform Interface

PL SW integrated with PF SW

- PF and PL share same OBC (onboard computer)
- PF ASW and PL ASW share OSRA-P execution
 platform

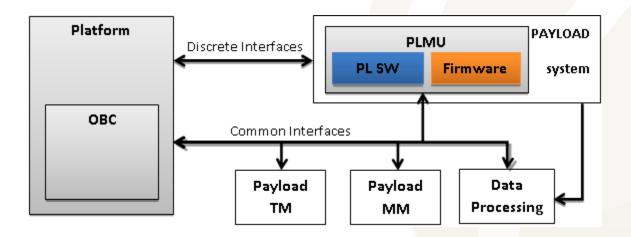
TSP-based runtime:


- PL and PF development processes are more independent
- Different criticality of PL and PF SW
- I/O partitioning

Classical runtime:

- PL and PF development processes depend on each other
- Same criticality of PL and PF SW

2. Payload Interface-Unit Interface



PL interface-Unit: (programmable HW, FPGA/ASICs)

- Similar SW characteristics as Direct PL-PF interface
- Some SW functions (possibly EP functions) are delegated to the PLIU

3. Payload Management-Unit Interface

PL Management-Unit:

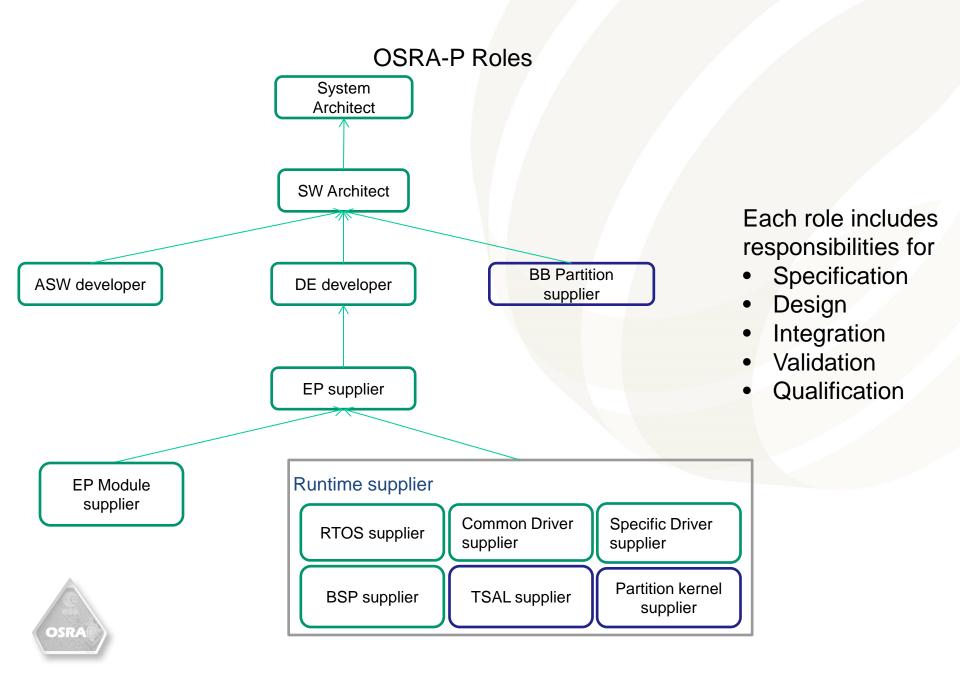
- PL processor running PL SW
- (Programmable) HW running PL functions

Independence between PF and PL SW

- PF and PL on different OBCs
- PF ASW and PL ASW have their own execution platform
- Independent development processes
- Possibly different criticalities for PL and PF SW

OSRA-P execution Platform Configuration

- 1. Module selection (e.g., OBCP engine, Memory Access Service)
- 2. Source code adaption (e.g., Common drivers)
- New module integration (e.g., Specific drivers, libraries)
- 4. Executable image generation (e.g., tayloring based on mission SDB)



Relation to PUS

OSR/

Service	Service name	EP Module	Applicability M: mandatory O: optional
1	Telecommand verification service	Protocol Handling	М
2	Device command distribution service	Platform Access Service	М
3	Housekeeping & diagnostic data reporting service	Reporting Service	М
4	Parameter statistics reporting service	Reporting Service	0
5	Event reporting service	Reporting service	M
6	Memory management service	Platform Access Service	М
7	Not used		
8	Function management service	Commanding Service	0
9	Time management service	Platform Access Service	М
10	Not used		
11	On-board operations scheduling service	Automation Service	0
12	On-board monitoring service	Monitoring Service	М
13	Large data transfer service	FPSS, Platform Access Service	0
14	Packet forwarding control service	Forwarding Service	0
15	On-board storage and retrieval service	FPSS, Platform Access Service	0
16	Not used		
17	Test service	Platform Access Service	М
18	On-board operations procedure service	OBCP Engine	0
19	Event Action	Automation service	М

OSRAP Workshop Discussion & Feedback

Discussion topics / feedback	
• Data pool: where / how?	Distributed over EP modules
Reporting service is responsible for Parameter setting	Currently, as in COrDeT OSRA
 Mandatory and optional EP modules 	EP modules are selectable
• Support for time-and-space partitioning	2 EP runtimes
• Common and specific HW drivers	Configuration vs new modules

• Actors, roles, contractual aspects

OSRA-P roles applied to case study

43 Attendees (16 from ESA, 27 from industry) From 27 industry attendees, 6 (22%) provided feedback Case study 1: MTG FCI/IRS ICU SW Focus: Development Process

Two instruments (imager & sounder)

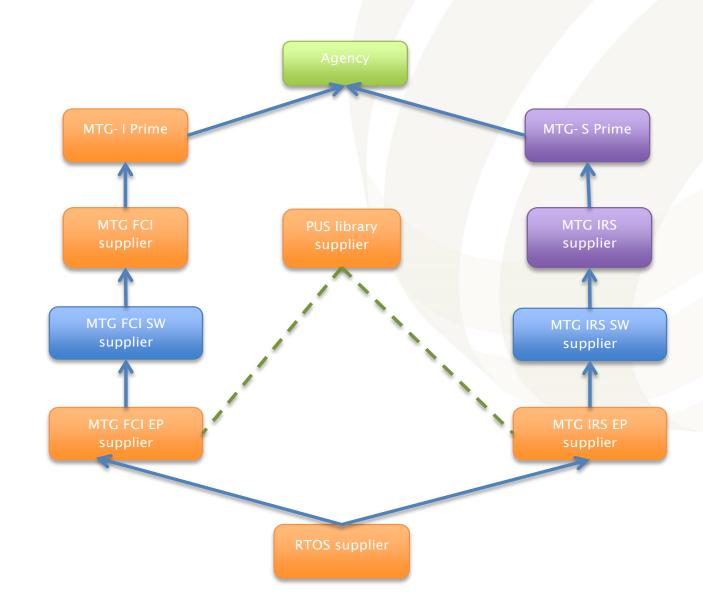
Similar SW architecture based on an *MTG Execution Platform*

MTG execution platform contains shared FCI/IRS functionality

FCI and IRS specific functionality implemented on top of MTG execution platform

Case study: MTG FCI/IRS ICU SW

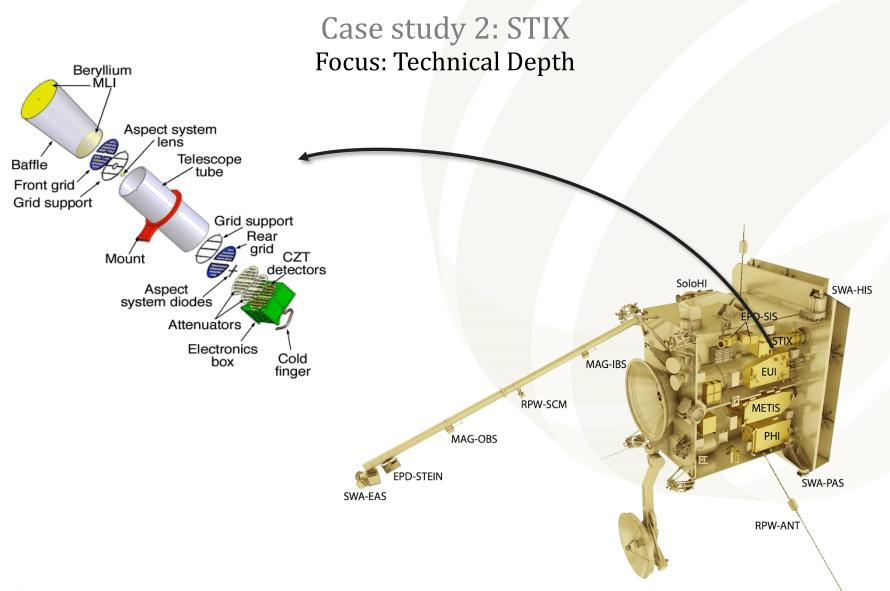
FCI/IRS instantiation of OSRA-P:


Use generic OSRA-P functionality as much as possible

Remaining, FCI/IRS specific, functionality:

- 1. Workplan management (mission operations)
- 2. Thermal control
- 3. PUS 128+ (application specific services)
- 4. Specific HW management

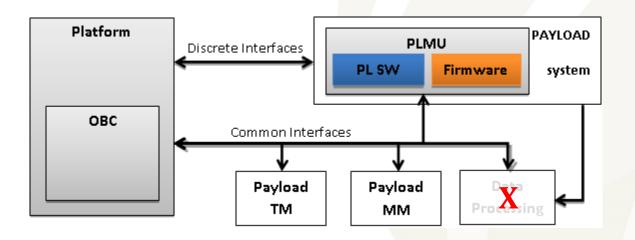
MTG FCI/IRS ICU ASW Actors



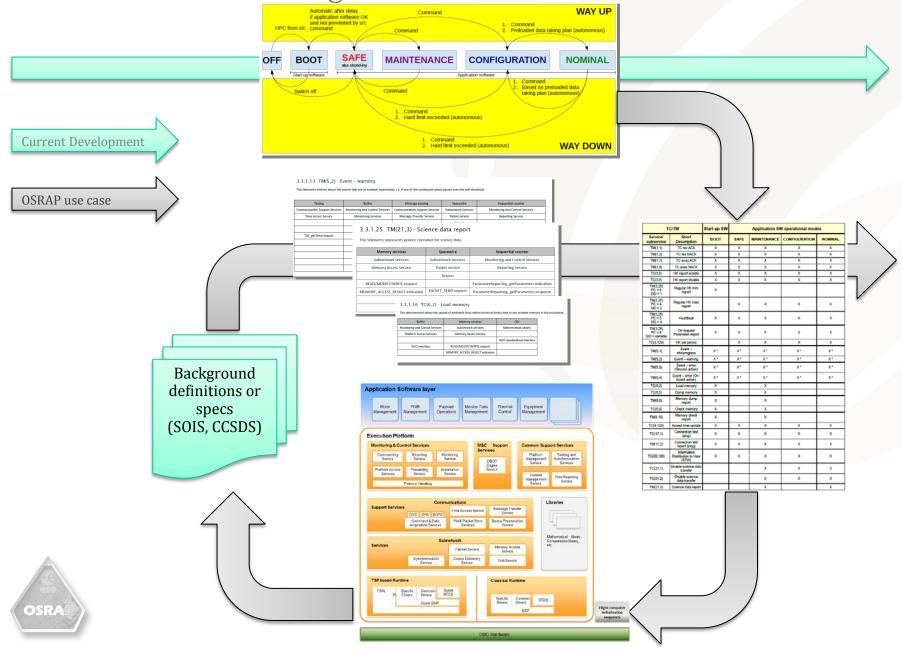
OSRA

Mapping roles and (FCI) actors

Role	Actor
System Architect	MTG FCI prime
SW Architect	MTG FCI SW supplier
ASW supplier	MTG FCI SW supplier
Design Environment Engineer	MTG FCI Execution Platform supplier
Black-Box Partition Supplier	N.A.
Execution Platform Supplier	MTG FCI Execution Platform supplier
Execution Platform Module Supplier	MTG FCI Execution Platform supplier
Common driver supplier	MTG FCI OBC supplier
Specific driver supplier	MTG FCI Execution Platform supplier
BSP	MTG FCI OBC supplier
Guest RTOS Supplier	MTG FCI Execution Platform supplier
Partitioning Kernel Supplier	N.A.



The rebuilding of a FSW's static architecture based on its TMTC structure/ICD using the EP


PF – PL Type: Payload Management-Unit Interface

- PL Management-Unit:
 - PL processor (ICU) running PLASW
 - (Programmable) HW running PL functions
 - Local (private) MM also available
- PF-PL communication via standardized link (SpW)
- Independence between PF and PL SW
 - Typical ECSS waterfall development processes
 - B criticality level (mission critical)

Re-design of STIX FSW in OSRAP

Re-design of STIX FSW in OSRAP

Current Development

6.7.2	TM(5,2) – E	rror/Anomaly	Report – Low	Severity	(warning)
-------	-------------	--------------	--------------	----------	-----------

Implementation according to Solar Orbiter Generic frame and packet structure [AD-09].

EID	Meaning/parameters/applicability							
0x5420	Too many IRQs w	arning report						
	Too many IRQs de	s detected or spurious IRQs detected						
	Parameters	1 octet – 8bits	Timer TBC IRQ counter					
		1 octet – 8bits	Space Wire TBC IRQ counter					
1 octet – 8bits 1 octet – 8bits		1 octet – 8bits	ADC Read TBC IRQ counter					
		1 octet – 8bits	TBD IRQ counter					
		1 octet – 8bits	TBD IRQ counter					
		1 octet – 8bits	TBD IRQ counter					
		1 octet – 8bits	TBD IRQ counter					
		1 octet – 8bits	TBD IRQ counter					
		1 octet – 8bits	TBD IRQ counter					
		1 octet – 8bits	TBD IRQ counter					
	Applicability	Any mode (both Star	rt-up and Application SW)					

Table 50: TM(5,X) – Event reporting

0v5/101 Stack pointer problem wa

OSRAP use case

3.3.1.13 TM(5,2) - Event - warning

This telemetry informs about the events that are of medium importance, i.e. if one of the monitored values passes over the soft-threshold.

Timing	Buffer	Message passing	Spacewire	Sequential counter
Communication Support Services	Monitoring and Control Services	Communication Support Services	Subnetwork Services	Monitoring and Control Services
Time Access Service	Monitoring Services	Message Transfer Service	Packet service	Reporting Service
			Drivers	
TAS_getTime.request	various	Send.request		ParameterReporting_getParameters.indication
		Query.request	PACKET_SEND.request	ParameterReporting_getParameters.respons
		Reply.request		ParameterReporting_setParameters.indication
		Message.indication		ParameterReporting_setParameters.respons
		Reply.indication		
		Fault.indication		

Parameter	Value	Remark
APID – PID	90	STIX Command & Control Application
APID – Packet Category	7	Event
Packet data field length - 1	Variable	-
Service Type	5	Event reporting
Service Subtype	variable	1, 2, 3, 4
EID (2 octets)	variable	Defined below
Parameters (variable length)	variable	Defined below in Table 52, Table 53, Table 54 and Table 55

Case study conclusions / lessons learned

- 1. No analyzed instrument needs all EP modules EP modules are selectable and configurable
- 2. Original EP definitions,- some appeared applicable, but their detailed definitions were found either ambiguous or incomplete (i.e. how to define/set groups)
- 3. In certain circumstances, the EP gave room for design options. In STIX, this was in FDIR we could have used Automation Service or OBCP for implementing low severity or simple response FDIR
- 4. Actual roles were used to define generic OSRA-P roles. OSRA-P roles can help defining contractual relations

Conclusions

High level Aims Of common SW Arch.

- 1. Faster and more efficient development and integration of payload systems.
- 2. Improve reuse
- 3. Reduced effort for quality assurance and qualification
- 4. Streamline cooperation between PL experts and PL SW developers
- 5. Facilitating multi-team suppliers
- 6. de-risk/improve the interfacing between SW

Objectives of OSRAP

- 1. Review Payload Domain
- 2. Define an OSRA for Payloads ((leverage results of OSRA on platform side)
- 3. Demonstrate OSRA-P

Results

- Domain analyzed based on 12 Payloads
- 2. OSRA-P Built on top of existing platform OSRA
- OSRA-P encapsulates generic functionality of Payload systems, based on real instruments
- Replication of development process of a real instrument
- 5. Technical Design of instrument SW feasible

Open issues / future work

- Component-based PL SW Engineering?
- OSRA-P based Boot SW?
- How best to divide actor responsibilities?

- OSRA-P Requirement specification
- Specification of reusable components
- Prototype implementations
- Tool-support
- Qualification

